Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Advances in Contemporary Statistics and Econometrics
  • Language: en
  • Pages: 713

Advances in Contemporary Statistics and Econometrics

This book presents a unique collection of contributions on modern topics in statistics and econometrics, written by leading experts in the respective disciplines and their intersections. It addresses nonparametric statistics and econometrics, quantiles and expectiles, and advanced methods for complex data, including spatial and compositional data, as well as tools for empirical studies in economics and the social sciences. The book was written in honor of Christine Thomas-Agnan on the occasion of her 65th birthday. Given its scope, it will appeal to researchers and PhD students in statistics and econometrics alike who are interested in the latest developments in their field.

Spatial Data Science
  • Language: en
  • Pages: 315

Spatial Data Science

  • Type: Book
  • -
  • Published: 2023-05-10
  • -
  • Publisher: CRC Press

-Written by the authors of key spatial R packages -Makes spatial data analysis more robust -Integrates with the tidyverse and comparable approaches -Includes many easily reproducible examples

Robust and Multivariate Statistical Methods
  • Language: en
  • Pages: 500

Robust and Multivariate Statistical Methods

This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.

Portfolio Theory and Arbitrage: A Course in Mathematical Finance
  • Language: en
  • Pages: 309

Portfolio Theory and Arbitrage: A Course in Mathematical Finance

This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called “Kelly” or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization. The bo...

Reproducing Kernel Hilbert Spaces in Probability and Statistics
  • Language: en
  • Pages: 369

Reproducing Kernel Hilbert Spaces in Probability and Statistics

The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.

Deep Learning
  • Language: en
  • Pages: 548

Deep Learning

A concise and practical exploration of key topics and applications in data science In Deep Learning, from Big Data to Artificial Intelligence, expert researcher Dr. Stéphane Tufféry delivers an insightful discussion of the applications of deep learning and big data that focuses on practical instructions on various software tools and deep learning methods relying on three major libraries: MXNet, PyTorch, and Keras-TensorFlow. In the book, numerous, up-to-date examples are combined with key topics relevant to modern data scientists, including processing optimization, neural network applications, natural language processing, and image recognition. This is a thoroughly revised and updated edit...

African Doctorates in Mathematics
  • Language: en
  • Pages: 385

African Doctorates in Mathematics

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: Lulu.com

This volume presents a catalogue of over 2000 doctoral theses by Africans in all fields of mathematics, including applied mathematics, mathematics education and history of mathematics. The introduction contains information about distribution by country, institutions, period, and by gender, about mathematical density, and mobility of mathematicians. Several appendices are included (female doctorate holders, doctorates in mathematics education, doctorates awarded by African universities to non-Africans, doctoral theses by non-Africans about mathematics in Africa, activities of African mathematicians at the service of their communities). Paulus Gerdes compiled the information in his capacity of Chairman of the African Mathematical Union Commission for the History of Mathematics in Africa (AMUCHMA). The book contains a preface by Mohamed Hassan, President of the African Academy of Sciences (AAS) and Executive Director of the Academy of Sciences for the Developing World (TWAS). (383 pp.)

Case Studies in Spatial Point Process Modeling
  • Language: en
  • Pages: 312

Case Studies in Spatial Point Process Modeling

Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006

Methods and Applications of Autonomous Experimentation
  • Language: en
  • Pages: 575

Methods and Applications of Autonomous Experimentation

  • Type: Book
  • -
  • Published: 2023-12-14
  • -
  • Publisher: CRC Press

Autonomous Experimentation is poised to revolutionize scientific experiments at advanced experimental facilities. Whereas previously, human experimenters were burdened with the laborious task of overseeing each measurement, recent advances in mathematics, machine learning and algorithms have alleviated this burden by enabling automated and intelligent decision-making, minimizing the need for human interference. Illustrating theoretical foundations and incorporating practitioners’ first-hand experiences, this book is a practical guide to successful Autonomous Experimentation. Despite the field’s growing potential, there exists numerous myths and misconceptions surrounding Autonomous Experimentation. Combining insights from theorists, machine-learning engineers and applied scientists, this book aims to lay the foundation for future research and widespread adoption within the scientific community. This book is particularly useful for members of the scientific community looking to improve their research methods but also contains additional insights for students and industry professionals interested in the future of the field.

Elements of Dimensionality Reduction and Manifold Learning
  • Language: en
  • Pages: 617

Elements of Dimensionality Reduction and Manifold Learning

Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, an...