You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Contemporary research in algebraic geometry is the focus of this collection, which presents articles on modern aspects of the subject. The list of topics covered is a roll-call of some of the most important and active themes in this thriving area of mathematics: the reader will find articles on birational geometry, vanishing theorems, complex geometry and Hodge theory, free resolutions and syzygies, derived categories, invariant theory, moduli spaces, and related topics, all written by leading experts. The articles, which have an expository flavour, present an overall picture of current research in algebraic geometry, making this book essential for researchers and graduate students. This volume is the outcome of the conference Recent Advances in Algebraic Geometry, held in Ann Arbor, Michigan, to honour Rob Lazarsfeld's many contributions to the subject on the occasion of his 60th birthday.
This volume contains the proceedings of the conference Local and Global Methods in Algebraic Geometry, held from May 12–15, 2016, at the University of Illinois at Chicago, in honor of Lawrence Ein's 60th birthday. The articles cover a broad range of topics in algebraic geometry and related fields, including birational geometry and moduli theory, analytic and positive characteristic methods, geometry of surfaces, singularity theory, hyper-Kähler geometry, rational points, and rational curves.
A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.
The finite generation theorem is a major achievement of modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic zero is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar-Cascini-Hacon-McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend and break method, vanishing theorems, positivity theorems and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
"Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry. The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the 'other side' of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects. The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series is designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists."--Publisher's description.
Arising from the 2022 Japan-US Mathematics Institute, this book covers a range of topics in modern algebraic geometry, including birational geometry, classification of varieties in positive and zero characteristic, K-stability, Fano varieties, foliations, the minimal model program and mathematical physics. The volume includes survey articles providing an accessible introduction to current areas of interest for younger researchers. Research papers, written by leading experts in the field, disseminate recent breakthroughs in areas related to the research of V.V. Shokurov, who has been a source of inspiration for birational geometry over the last forty years.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.