You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objectives, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2023 and beyond. This final report presents a review of the current understanding of the early earth and moon; the identification of key science concepts and goals for moon exploration; an assessment of implementation options; and a set of prioritized lunar science concepts, goals, and recommendations. An interim report was released in September 2006.
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objective, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2013+. This interim report, which focuses on science of the Moon, presents a number of scientific themes describing broad scientific goals important for lunar research, discussions of how best to reach these goals, a set of three priority areas that follow from the themes, and recommendations for these priorities and related areas. A final report will follow in the summer of 2007.
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objective, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2013+. This interim report, which focuses on science of the Moon, presents a number of scientific themes describing broad scientific goals important for lunar research, discussions of how best to reach these goals, a set of three priority areas that follow from the themes, and recommendations for these priorities and related areas. A final report will follow in the summer of 2007.
To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.
In January 2004 NASA was given a new policy direction known as the Vision for Space Exploration. That plan, now renamed the United States Space Exploration Policy, called for sending human and robotic missions to the Moon, Mars, and beyond. In 2005 NASA outlined how to conduct the first steps in implementing this policy and began the development of a new human-carrying spacecraft known as Orion, the lunar lander known as Altair, and the launch vehicles Ares I and Ares V. Collectively, these are called the Constellation System. In November 2007 NASA asked the National Research Council (NRC) to evaluate the potential for new science opportunities enabled by the Constellation System of rockets and spacecraft. The NRC committee evaluated a total of 17 mission concepts for future space science missions. Of those, the committee determined that 12 would benefit from the Constellation System and five would not. This book presents the committee's findings and recommendations, including cost estimates, a review of the technical feasibility of each mission, and identification of the missions most deserving of future study.
The Space Studies Board (SSB) was established in 1958 to serve as the focus of the interests and responsibilities in space research for the National Academies. The SSB provides an independent, authoritative forum for information and advice on all aspects of space science and applications, and it serves as the focal point within the National Academies for activities on space research. It oversees advisory studies and program assessments, facilitates international research coordination, and promotes communications on space science and science policy between the research community, the federal government, and the interested public. The SSB also serves as the U.S. National Committee for the International Council for Science Committee on Space Research (COSPAR). The present volume reviews the organization, activities, and reports of the SSB for the year 2009.
This book presents the complete story of the human lunar experience, including significant events in lunar science.
The presentations at this NASA-hosted Symposium in honor of Mino Freund will touch upon the fields, to which his prolific mind has made significant contributions. These include low temperature physics, cosmology, and nanotechnology with its wide-ranging applicability to material science, neuroscience, Earth sciences and satellite technology. To learn more about Mino’s career you can download the "Tribute" http://multimedia.seti.org/mino/Tribute.pdf which outlines his journey from (i) low-temperature physics and superconductivity at the ETH Zürich to (ii) building one remarkable milliKelvin refrigerator for the US-Japan IRTS mission at UC Berkeley and ISAS in Japan to (iii) a decade in cos...
In January 2004, President Bush announced a new space policy directed at human and robotic exploration of space. The National Academies released a report at the same time that independently addressed many of the issues contained in the new policy. In June, the President's Commission on Implementation of United States Space Exploration Policy issued a report recommending that NASA ask the National Research Council (NRC) to reevaluate space science priorities to take advantage of the exploration vision. Congress also directed the NRC to conduct a thorough review of the science NASA is proposing to undertake within the initiative. This report provides an initial response to those requests. It presents guiding principles for selecting science missions that enhance and support the exploration program. The report also presents findings and recommendations to help guide NASA's space exploration strategic planning activity. Separate NRC reviews will be carried out of strategic roadmaps that NASA is developing to implement the policy.
In spring 2011 the National Academies of Sciences, Engineering, and Medicine produced a report outlining the next decade in planetary sciences. That report, titled Vision and Voyages for Planetary Science in the Decade 2013-2022, and popularly referred to as the "decadal survey," has provided high-level prioritization and guidance for NASA's Planetary Science Division. Other considerations, such as budget realities, congressional language in authorization and appropriations bills, administration requirements, and cross-division and cross-directorate requirements (notably in retiring risk or providing needed information for the human program) are also necessary inputs to how NASA develops its...