You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"One should rather go horne and mesh a net than jump into the pond and dive far fishes" (Chinese proverb) Recognizing the precise analytical question and planning the analysis according ly is certainly the first prerequisite for successful trace and ultratrace determina tions. The second prerequisite is to select the method appropriate to the analyti cal specification. The method itself consists of a set of available tools. The third prerequisite is that analysts and operators know the methods weH enough to enjoy challenging themselves as weH as the methods and are rewarded by the joy of high-quality data, fast and economical results and the conviction of having the analytical job under cont...
This invaluable book has been written for engineers and engineering scientists in a style that is readable, precise, concise, and practical. It gives first priority to the formulation of problems, presenting the classical results as the gold standard, and the numerical approach as a tool for obtaining solutions. The classical part is a revision of the well-known text Foundations of Solid Mechanics, with a much-expanded discussion on the theories of plasticity and large elastic deformation with finite strains. The computational part is all new and is aimed at solving many major linear and nonlinear boundary-value problems.
Examines the operations of the credit insurance industry; its common practices and its competitive effects upon lenders, the economy and the consumer.
Modeling Damage, Fatigue and Failure of Composite Materials, Second Edition provides the latest research in the field of composite materials, an area that has attracted a wealth of research, with significant interest in the areas of damage, fatigue, and failure. The book is fully updated, and is a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials. It focuses on materials modeling while also reviewing treatments for analyzing failure in composite structures. Sections review damage development in composite materials such as generic damage and damage accumulation in textile composites and under multiaxial loading. ...
Over the last 50 years, great progress has been made in developing artificial fibre-reinforced composite materials, generally using filaments with microscopic diameters. A wide range of reinforcement forms, from random arrays to fully aligned, can be used for commercial applications, with the microstructure being a critical factor in realising the required properties in a material. This is the first up-to-date review of how to apply advanced microstructural characterisation techniques to fibre-reinforced composites. Each chapter is designed to offer both a stand-alone introduction to its topic and detailed referencing for follow-up research. With contributions from experts from around the world, the book will be an essential reference for materials scientists and research workers in industry and academia alike. Comprehensive and up-to-date review of the microstructural features of composites Covers a wide range of microstructure characterisation techniques
This very practical book is intended to show how composites are increasingly being used in real-world applications in areas where the primary material choice in the past would have been exclusively metals-based. A series of in-depth case studies examiines the design processes involved in putting together aircraft fuselages, Formua 1 cars, Transit van roofs, infrastructure systems for water treatment and storage and many other novel applications for FRCs. It shows how an awareness of engineering properties needs to be built into the design process at an early stage.It is essential for professionals in, and newcomers to, the FRP industry; executives in engineering and manufacturing who are considering using FRPs in place of more traditional materials; students in materials science and engineering.
Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications provides a detailed overview of fiber, float and container glass technology with special emphasis on energy- and environmentally-friendly compositions, applications and manufacturing practices which have recently become available and continue to emerge. Energy-friendly compositions are variants of incumbent fiberglass and glass compositions that are obtained by the reformulation of incumbent compositions to reduce the viscosity and thereby the energy demand. Environmentally-friendly compositions are variants of incumbent fiber, float and container glass compositions that are obtained by the reformulation of incumb...