You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book brings together research articles and state-of-the-art surveys in broad areas of optimization and numerical analysis with particular emphasis on algorithms. The discussion also focuses on advances in monotone operator theory and other topics from variational analysis and nonsmooth optimization, especially as they pertain to algorithms and concrete, implementable methods. The theory of monotone operators is a central framework for understanding and analyzing splitting algorithms. Topics discussed in the volume were presented at the interdisciplinary workshop titled Splitting Algorithms, Modern Operator Theory, and Applications held in Oaxaca, Mexico in September, 2017. Dedicated to Jonathan M. Borwein, one of the most versatile mathematicians in contemporary history, this compilation brings theory together with applications in novel and insightful ways.
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their stru...
This volume of proceedings consists of the papers presented during the 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Lefkada, Greece, on 27-29 September 2007.The book contains papers on scattering theory and biomedical engineering ? two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. In addition, some papers focus more on applied mathematics, which is the solid ground for development and innovative research in scattering and biomedical engineering.
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and ch...
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis of Frames, Wavelets, and Tilings, held April 13-14, 2013, in Boulder, Colorado. Frames were first introduced by Duffin and Schaeffer in 1952 in the context of nonharmonic Fourier series but have enjoyed widespread interest in recent years, particularly as a unifying concept. Indeed, mathematicians with backgrounds as diverse as classical and modern harmonic analysis, Banach space theory, operator algebras, and complex analysis have recently worked in frame theory. Frame theory appears in the context of wavelets, spectra and tilings, sampling theory, and more. The papers in this volume touch on a wide variety...
Lensless, holographic X-ray microscopy is a non-invasive imaging technique that provides resolution on the nanometer scale. Therefore, a divergent, coherent and especially clean wave front impinging on the sample is needed. Yet, focusing X-rays by even the most advanced X-ray mirrors causes so called figure errors of high spatial frequency content. The results are strongly deteriorated intensity profiles that are often even more pronounced than the holographic image of the sample itself. A common strategy to compensate these figure errors is to divide the hologram by the pure intensity profile of the beam (the so called flat field). However, this division is only valid in the limiting case o...
With the media bringing us constant tales of terrorism and violence, questions regarding the nature of evil are highly topical. Luke Russell explores the philosophical thinking and psychological evidence behind evil, alongside portrayals of fictional villains, considering why people are evil, and how it goes beyond the normal realms of what is bad.