You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It is just over 80 years ago that a striking oscillatory field dependence was discovered in the magnetic behaviour of bismuth at low temperatures. This book was first published in 1984 and gives a systematic account of the nature of the oscillations, of the experimental techniques for their study and of their connection with the electronic structure of the metal concerned. Although the main emphasis is on the oscillations themselves and their many peculiarities, rather than on the theory of the electronic structure they reveal, sufficient examples are given in detail to illustrate the kind of information that has been obtained and how this information agrees with theoretical prediction.
James Chadwick (1891-1974) came from a humble background: his father was a cotton spinner. He was accepted in the physics department of Sir Ernest Rutherford at Manchester University in 1908 on a scholarship, and soon started publishing new findings about radioactivity. This led to a traveling scholarship to Berlin, where he made the important discovery of the continuous spectrum of β-particles. When the World War I broke out, Chadwick was interned by the Germans as an enemy alien for the next four years, but continued experiments in the prison camp. On his return to England in broken health, Rutherford invited Chadwick to join the Cavendish Laboratory in Cambridge where he became Rutherfor...
Solid State Physics
This book deals with the electronic and optical properties of two low-dimensional systems: quantum dots and quantum antidots and is divided into two parts. Part one is a self-contained monograph which describes in detail the theoretical and experimental background for exploration of electronic states of the quantum-confined systems. Starting from the single-electron picture of the system, the book describes various experimental methods that provide important information on these systems. Concentrating on many-electron systems, theoretical developments are described in detail and their experimental consequences are also discussed. The field has witnessed an almost explosive growth and some of...
Progress in Low Temperature Physics
This book offers a broad coverage of the physical properties of solids at fundamental level. The quantum mechanical origins that lead to a wide range of observed properties are discussed. The book also includes a modern treatment of unusual physical states.
One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.
Featuring contributions from experts in mathematical biology and biomedical research, this edited volume covers a diverse set of topics on mathematical methods and applications in the biosciences. Topics focus on advanced mathematical methods, with chapters on the mathematical analysis of the quasispecies model, Arnold’s weak resonance equation, bifurcation analysis, and the Tonnelier-Gerstner model. Special emphasis is placed on applications such as natural selection, population heterogeneity, polyvariant ontogeny in plants, cancer dynamics, and analytical solutions for traveling pulses and wave trains in neural models. A survey on quasiperiodic topology is also presented in this book. Carefully peer-reviewed, this volume is suitable for students interested in interdisciplinary research. Researchers in applied mathematics and the biosciences will find this book an important resource on the latest developments in the field. In keeping with the STEAM-H series, the editors hope to inspire interdisciplinary understanding and collaboration.