Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Geometry of Cubic Hypersurfaces
  • Language: en
  • Pages: 462

The Geometry of Cubic Hypersurfaces

Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.

Groups and Symmetries
  • Language: en
  • Pages: 387

Groups and Symmetries

None

Lie Algebras, Vertex Operator Algebras, and Related Topics
  • Language: en
  • Pages: 282

Lie Algebras, Vertex Operator Algebras, and Related Topics

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.

Characterization and Topological Rigidity of Nobeling Manifolds
  • Language: en
  • Pages: 106

Characterization and Topological Rigidity of Nobeling Manifolds

The author develops a theory of Nobeling manifolds similar to the theory of Hilbert space manifolds. He shows that it reflects the theory of Menger manifolds developed by M. Bestvina and is its counterpart in the realm of complete spaces. In particular the author proves the Nobeling manifold characterization conjecture.

Character Identities in the Twisted Endoscopy of Real Reductive Groups
  • Language: en
  • Pages: 106

Character Identities in the Twisted Endoscopy of Real Reductive Groups

Suppose $G$ is a real reductive algebraic group, $\theta$ is an automorphism of $G$, and $\omega$ is a quasicharacter of the group of real points $G(\mathbf{R})$. Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups $H$. The Local Langlands Correspondence partitions the admissible representations of $H(\mathbf{R})$ and $G(\mathbf{R})$ into $L$-packets. The author proves twisted character identities between $L$-packets of $H(\mathbf{R})$ and $G(\mathbf{R})$ comprised of essential discrete series or limits of discrete series.

On $L$-Packets for Inner Forms of $SL_n$
  • Language: en
  • Pages: 110

On $L$-Packets for Inner Forms of $SL_n$

The theory of $L$-indistinguishability for inner forms of $SL_2$ has been established in the well-known paper of Labesse and Langlands (L-indistinguishability forSL$(2)$. Canad. J. Math. 31 (1979), no. 4, 726-785). In this memoir, the authors study $L$-indistinguishability for inner forms of $SL_n$ for general $n$. Following the idea of Vogan in (The local Langlands conjecture. Representation theory of groups and algebras, 305-379, Contemp. Math. 145 (1993)), they modify the $S$-group and show that such an $S$-group fits well in the theory of endoscopy for inner forms of $SL_n$.

Second Order Analysis on $(\mathscr {P}_2(M),W_2)$
  • Language: en
  • Pages: 173

Second Order Analysis on $(\mathscr {P}_2(M),W_2)$

The author develops a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. The discussion includes: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.

Towards a Modulo $p$ Langlands Correspondence for GL$_2$
  • Language: en
  • Pages: 127

Towards a Modulo $p$ Langlands Correspondence for GL$_2$

The authors construct new families of smooth admissible $\overline{\mathbb{F}}_p$-representations of $\mathrm{GL}_2(F)$, where $F$ is a finite extension of $\mathbb{Q}_p$. When $F$ is unramified, these representations have the $\mathrm{GL}_2({\mathcal O}_F)$-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod $p$ Langlands correspondence.

Geometric and Cohomological Group Theory
  • Language: en
  • Pages: 277

Geometric and Cohomological Group Theory

Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.

On Some Aspects of Oscillation Theory and Geometry
  • Language: en
  • Pages: 208

On Some Aspects of Oscillation Theory and Geometry

The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.