You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Automatic content generation is the production of content for games, web pages, or other purposes by procedural means. Search-based automatic content generation employs search-based algorithms to accomplish automatic content generation. This book presents a number of different techniques for search-based automatic content generation where the search algorithm is an evolutionary algorithm. The chapters treat puzzle design, the creation of small maps or mazes, the use of L-systems and a generalization of L-system to create terrain maps, the use of cellular automata to create maps, and, finally, the decomposition of the design problem for large, complex maps culminating in the creation of a map...
This book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. It introduces the derivative using the limit-based definition and covers the standard function library and the product, quotient, and chain rules. It explores the applications of the derivative to curve sketching and optimization and concludes with the formal definition of the limit, the squeeze theorem, and the mean value theorem.
This book continues the material in two early Fast Start calculus volumes to include multivariate calculus, sequences and series, and a variety of additional applications. These include partial derivatives and the optimization techniques that arise from them, including Lagrange multipliers. Volumes of rotation, arc length, and surface area are included in the additional applications of integration. Using multiple integrals, including computing volume and center of mass, is covered. The book concludes with an initial treatment of sequences, series, power series, and Taylor's series, including techniques of function approximation.
This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.
This book introduces integrals, the fundamental theorem of calculus, initial value problems, and Riemann sums. It introduces properties of polynomials, including roots and multiplicity, and uses them as a framework for introducing additional calculus concepts including Newton's method, L'Hôpital's Rule, and Rolle's theorem. Both the differential and integral calculus of parametric, polar, and vector functions are introduced. The book concludes with a survey of methods of integration, including u-substitution, integration by parts, special trigonometric integrals, trigonometric substitution, and partial fractions.
Evolving agents to play games is a promising technology. It can provide entertaining opponents for games like Chess or Checkers, matched to a human opponent as an alternative to the perfect and unbeatable opponents embodied by current artificial intelligences. Evolved agents also permit us to explore the strategy space of mathematical games like Prisoner's Dilemma and Rock-Paper-Scissors. This book summarizes, explores, and extends recent work showing that there are many unsuspected factors that must be controlled in order to create a plausible or useful set of agents for modeling cooperation and conflict, deal making, or other social behaviors. The book also provides a proposal for an agent training protocol that is intended as a step toward being able to train humaniform agents—in other words, agents that plausibly model human behavior.
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on R+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution (, ) to the NSP exists for all ≥ 0 and (, ) = 0). It is shown that if the initial data 0() ≢ 0, (,) = 0 and the solution to the NSP exists for all ε R+, then 0() := (, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 21(R3) × C(R+) is proved, 21(R3) is the Sobolev space, R+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.
This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central 2, , , Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful. Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter a...
Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.