You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory ...
This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture “Leonhard Euler — 300 years on” by R Wilson. Notable contributors include J F Cariñena, M Castrillón López, J Erichhorn, J-H Eschenburg, I Kolář, A P Kopylov, J Korbaš, O Kowalski, B Kruglikov, D Krupka, O Krupková, R Léandre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muñoz Masqué, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovák, J Szilasi, L Tamássy, P Walczak, and others.
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture ?Leonhard Euler ? 300 years on? by R Wilson. Notable contributors include J F Cari¤ena, M Castrill¢n L¢pez, J Erichhorn, J-H Eschenburg, I Kol ?, A P Kopylov, J Korba?, O Kowalski, B Kruglikov, D Krupka, O Krupkov , R Landre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Mu¤oz Masqu, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slov k, J Szilasi, L Tam ssy, P Walczak, and others.
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.
A centenary volume that celebrates, extends and applies Noether's 1918 theorems with contributions from world-leading researchers.
This volume contains the papers devoted to physics presented at the Fifth International Conference on [title] which was held at the U. of Northern Iowa in Cedar Falls, August 1990. Among the topics in 28 papers: Lie-admissible complex time model, coherent nuclear states in a supermanifold, meson-mes