You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
1. G protein-coupled receptors in the human genome -- 2. Why G protein-coupled receptors databases are needed -- 3. A novel drug screening assay for G protein-coupled receptors -- 4. Importance of GPCR dimerization for function : the case of the class C GPCRs -- 5. Molecular mechanisms of GPCR activation -- 6. Allosteric properties and regulation of G protein-coupled receptors -- 7. Chemogenomics approaches to ligand design -- 8. Strategies for the design of pGPCR-targeted libraries -- 9. Ligand-based rational design : virtual screening -- 10. 3-D structure of G protein-coupled receptors --11. 7TM models in structure-based drug design -- 12. Receptor-based rational design : virtual screening.
Since the publication of the pioneering first edition of Chemical Genomics and Proteomics more than seven years ago, the area of chemical genomics has rapidly expanded and diversified to numerous novel methods and subdisciplines, such as chemical glycomics and lipidomics. This second edition has been updated to uniquely reflect this interdisciplinary feature as well as the remarkable developments that have occurred. The new edition also covers innovative applications from cell biology to drug discovery to, more recently, clinical diagnostics and medical practice.
Written for drug developers rather than computer scientists, this monograph adopts a systematic approach to mining scientifi c data sources, covering all key steps in rational drug discovery, from compound screening to lead compound selection and personalized medicine. Clearly divided into four sections, the first part discusses the different data sources available, both commercial and non-commercial, while the next section looks at the role and value of data mining in drug discovery. The third part compares the most common applications and strategies for polypharmacology, where data mining can substantially enhance the research effort. The final section of the book is devoted to systems biology approaches for compound testing. Throughout the book, industrial and academic drug discovery strategies are addressed, with contributors coming from both areas, enabling an informed decision on when and which data mining tools to use for one's own drug discovery project.
This book focuses on applications of compound library design and virtual screening to expand the bioactive chemical space, to target hopping of chemotypes to identify synergies within related drug discovery projects or to repurpose known drugs, to propose mechanism of action of compounds, or to identify off-target effects by cross-reactivity analys
Biological and chemical sciences have undergone an unprecedented transformation, reflected by the huge use of parallel and automated technologies in key fields such as genome sequencing, DNA chips, nanoscale functional biology or combinatorial chemistry. It is now possible to generate and store from tens of thousands to millions of new small molecules, based on enhanced chemical synthesis strategies. Automated screening of small molecules is one of the technologies that has revolutionized biology, first developed for the pharmaceutical industry and recently introduced in academic laboratories. High-throughput and high-content screening allow the identification of bioactive compounds in colle...
30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies. Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majorit...
Volume 1 of Computational Approaches in Bioengineering—Computational Approaches in Biotechnology and Bioinformatics—explores many significant topics of biomedical engineering and bioinformatics in an easily understandable format. It explores recent developments and applications in bioinformatics, biomechanics, artificial intelligence (AI), signal processing, wearable sensors, biomaterials, cell biology, synthetic biology, biostatistics, prosthetics, big data, and algorithms. From applications of biomaterials in advanced drug delivery systems to the role of big data, AI, and machine learning in disease diagnosis and treatment, the book will help readers understand how these technologies a...
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging...
The CTBN volume Therapeutic Applications of Dopamine D3 Receptor Function reviews the state of the knowledge on the dopamine D3 receptor and its role in human behavior and disease (i.e.: neuropsychiatric illnesses including schizophrenia, mood disorders, Parkinson’s disease, restless legs syndrome, addictions and substance use disorders). The volume is written by leading experts across multidisciplinary areas (imaging, biobehavioral testing and clinical trials, preclinical models / molecular pharmacology) converging on the therapeutic implications / potential of the D3 receptor. The D3 dopamine receptor is a member of the D2-like family of G protein-coupled receptors. It was cloned and characterized almost 25 years ago. A key feature of the D3 dopamine receptor system, which has attracted considerable attention, is its anatomical localization remarkably restricted to the limbic circuitry. This has spurred the hypothesis that D3 involvement could contribute to the pathophysiology of neuropsychiatric disorders (or to some features of neuropsychiatric disorders), including but not limited to psychosis, addictions and substance abuse, mood and movement disorders.