You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
1. G protein-coupled receptors in the human genome -- 2. Why G protein-coupled receptors databases are needed -- 3. A novel drug screening assay for G protein-coupled receptors -- 4. Importance of GPCR dimerization for function : the case of the class C GPCRs -- 5. Molecular mechanisms of GPCR activation -- 6. Allosteric properties and regulation of G protein-coupled receptors -- 7. Chemogenomics approaches to ligand design -- 8. Strategies for the design of pGPCR-targeted libraries -- 9. Ligand-based rational design : virtual screening -- 10. 3-D structure of G protein-coupled receptors --11. 7TM models in structure-based drug design -- 12. Receptor-based rational design : virtual screening.
The Practice of Medicinal Chemistry, Fourth Edition provides a practical and comprehensive overview of the daily issues facing pharmaceutical researchers and chemists. In addition to its thorough treatment of basic medicinal chemistry principles, this updated edition has been revised to provide new and expanded coverage of the latest technologies and approaches in drug discovery.With topics like high content screening, scoring, docking, binding free energy calculations, polypharmacology, QSAR, chemical collections and databases, and much more, this book is the go-to reference for all academic and pharmaceutical researchers who need a complete understanding of medicinal chemistry and its appl...
Written by experienced experts in molecular modeling, this books describes the basics to the extent that is necessary if one wants to be able to reliably judge the results from molecular modeling calculations. Its main objective is the description of the various pitfalls to be avoided. Without unnecessary overhead it leads the reader from simple calculations on small molecules to the modeling of proteins and other relevant biomolecules. A textbook for beginners as well as an invaluable reference for all those dealing with molecular modeling in their daily work!
Since the publication of the pioneering first edition of Chemical Genomics and Proteomics more than seven years ago, the area of chemical genomics has rapidly expanded and diversified to numerous novel methods and subdisciplines, such as chemical glycomics and lipidomics. This second edition has been updated to uniquely reflect this interdisciplinary feature as well as the remarkable developments that have occurred. The new edition also covers innovative applications from cell biology to drug discovery to, more recently, clinical diagnostics and medical practice.
Written for drug developers rather than computer scientists, this monograph adopts a systematic approach to mining scientifi c data sources, covering all key steps in rational drug discovery, from compound screening to lead compound selection and personalized medicine. Clearly divided into four sections, the first part discusses the different data sources available, both commercial and non-commercial, while the next section looks at the role and value of data mining in drug discovery. The third part compares the most common applications and strategies for polypharmacology, where data mining can substantially enhance the research effort. The final section of the book is devoted to systems biology approaches for compound testing. Throughout the book, industrial and academic drug discovery strategies are addressed, with contributors coming from both areas, enabling an informed decision on when and which data mining tools to use for one's own drug discovery project.
This book focuses on applications of compound library design and virtual screening to expand the bioactive chemical space, to target hopping of chemotypes to identify synergies within related drug discovery projects or to repurpose known drugs, to propose mechanism of action of compounds, or to identify off-target effects by cross-reactivity analys
Biological and chemical sciences have undergone an unprecedented transformation, reflected by the huge use of parallel and automated technologies in key fields such as genome sequencing, DNA chips, nanoscale functional biology or combinatorial chemistry. It is now possible to generate and store from tens of thousands to millions of new small molecules, based on enhanced chemical synthesis strategies. Automated screening of small molecules is one of the technologies that has revolutionized biology, first developed for the pharmaceutical industry and recently introduced in academic laboratories. High-throughput and high-content screening allow the identification of bioactive compounds in colle...
30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies. Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majorit...
Volume 1 of Computational Approaches in Bioengineering—Computational Approaches in Biotechnology and Bioinformatics—explores many significant topics of biomedical engineering and bioinformatics in an easily understandable format. It explores recent developments and applications in bioinformatics, biomechanics, artificial intelligence (AI), signal processing, wearable sensors, biomaterials, cell biology, synthetic biology, biostatistics, prosthetics, big data, and algorithms. From applications of biomaterials in advanced drug delivery systems to the role of big data, AI, and machine learning in disease diagnosis and treatment, the book will help readers understand how these technologies a...