You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Contains an overview of several technical topics of Quantile Regression Volume two of Quantile Regression offers an important guide for applied researchers that draws on the same example-based approach adopted for the first volume. The text explores topics including robustness, expectiles, m-quantile, decomposition, time series, elemental sets and linear programming. Graphical representations are widely used to visually introduce several issues, and to illustrate each method. All the topics are treated theoretically and using real data examples. Designed as a practical resource, the book is thorough without getting too technical about the statistical background. The authors cover a wide rang...
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quanti...
The contributions gathered in this book focus on modern methods for statistical learning and modeling in data analysis and present a series of engaging real-world applications. The book covers numerous research topics, ranging from statistical inference and modeling to clustering and factorial methods, from directional data analysis to time series analysis and small area estimation. The applications reflect new analyses in a variety of fields, including medicine, finance, engineering, marketing and cyber risk. The book gathers selected and peer-reviewed contributions presented at the 12th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLA...
This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.
The interaction between mathematicians and statisticians reveals to be an effective approach to the analysis of insurance and financial problems, in particular in an operative perspective. The Maf2006 conference, held at the University of Salerno in 2006, had precisely this purpose and the collection published here gathers some of the papers presented at the conference and successively worked out to this aim. They cover a wide variety of subjects in insurance and financial fields.
A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with e...
This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8–10, 2015.
This volume provides recent research results in data analysis, classification and multivariate statistics and highlights perspectives for new scientific developments within these areas. Particular attention is devoted to methodological issues in clustering, statistical modeling and data mining. The volume also contains significant contributions to a wide range of applications such as finance, marketing, and social sciences. The papers in this volume were first presented at the 7th Conference of the Classification and Data Analysis Group (ClaDAG) of the Italian Statistical Society, held at the University of Catania, Italy.
Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.
Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.