You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"This unique book is the only current publication that provides readers with a brief, yet concise, collection of the latest advances in chemical and biological agent detection and/or their surveillance. Nano and Microsensors for Chemical and Biological Terrorism Surveillance compiles and gives in-depth detail on several detection schemes so that the reader is provided with a general sense of these micro and nanoscale sensing systems and platforms." --Book Jacket.
This book critically assesses the current state of knowledge on new and important detection technologies, e.g. mass spectrometry, tandem mass spectrometry, biosensor detection and tissue imaging, in connection with toxic chemical and biological agents. In general, the main topics discussed concern the risks and consequences of chemical and biological agents for human health in general, with special emphasis on all biochemical and metabolic pathways including the reproductive system. The exposome, genetic risks and the environment, various health hazard agents, risk assessment, environmental assessment and preparedness, and analysis of sub-lethal effects at the molecular level are also discussed. In closing, the book provides comprehensive information on the diagnosis of exposure, and on health concerns related to toxic chemical and biological agents.
This detailed collection explores recent advances in molecular imaging techniques involving bioluminescence, currently employed in biolaboratories around the world. Volume 2 delves into techniques for heterogeneous conjugates, protein fragment-complementation assays, BRET-based imaging, as well as instrumentation and software. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, Bioluminescence: Methods and Protocols, Fourth Edition, Volume 2 presents practical guidance for researchers and technical staff on how to proceed with bioluminescence studies in their laboratories.
The use of light-emitting proteins for the detection of biomolecules provides fast and sensitive methods which overcome the disadvantages of radioactive labels and the high cost of fluorescent dyes. This reference work summarizes modern advanced techniques and their applications and includes practical examples of assays based on photoproteins. The book presents contemporary key topics like luminescent marine organisms, DNA probes, reporter gene assays and photoproteins, ratiometric sensing, use of photoproteins for in vivo functional imaging and luminescent proteins in binding assays, to name just a few, and is complemented by recent advances in instrumentation. Includes an introductory chapter by 2008 Chemistry Nobel laureate Osamu Shimomura.
Food ingredients are important molecules of the most diverse chemical classes responsible for conferring nutrition, stability, color, flavor, rheological and sensorial characteristics, in addition to several other important uses in the food industry. In this way, the production routes of these ingredients have gained more and more attention from consumers and producing industries, who expect that, in addition to their technological properties, these ingredients are still obtained without synthetic means, with savings of natural resources and mainly with less environmental impact. This book is intended for bioengineers, biologists, biochemists, biotechnologists, microbiologists, food technolo...
This comprehensive overview of chemiluminescence and bioluminescence covers historical developments, fundamental principles, recent advances, instrumentation, and applications.
This book describes the design and the use of bioluminescent biosensors. It introduces beginners and experienced researchers starting in the microbiological biosensor domain to the practical aspects of building a luminescent microbial biosensor. It is also a source of information about other applications that use microbial cells. Each chapter focus
This book discusses the history, physics, fundamental principles, sensing technologies, and characterization of plasmonic phenomenon-based fiber-optic biosensors, using optic-plasmonic sensors as a case study. It describes the plasmonic phenomenon and its application in optical fiber-based sensing, presented based on properties and usage of different nanomaterials spread across nine chapters. Content covers advances in nanomaterials, structural designing, and their scope in biomedical applications. Future developments of biosensing devices and related articulate methods are also described. Features: Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field This book is aimed at researchers and graduate students in Optical Communications, Biomedical Engineering, Optics, Sensors, Instrumentation, and Measurement.
Recent developments in various “OMICs” fields have revolutionized our understanding of the vast diversity and ubiquity of microbes in the biosphere. However, most of the current paradigms of microbial cell biology, and our view of how microbes live and what they are capable of, are derived from in vitro experiments on isolated strains. Even the co-culturing of mixed species to interrogate community behavior is relatively new. But the majority of microorganisms lives in complex communities in natural environments, under varying conditions, and often cannot be cultivated. Unless we obtain a detailed understanding of the near-native 3D ultrastructure of individual community members, the 3D ...