You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces a formalism for modeling complex and large-scale systems that merges Petri nets, differential equation systems, and object-oriented methods. It describes a method that starts from the requirements of a supervisory system and results in a proposal for such a system. The book also presents a validation procedure that allows verification of the formal properties of the hybrid model.
As the main theme of Improving Complex Systems Today implies, this book is intended to provide readers with a new perspective on concurrent engineering from the standpoint of systems engineering. It can serve as a versatile tool to help readers to navigate the ever-changing state of this particular field. The primary focus of concurrent engineering was, at first, on bringing downstream information as far upstream as possible by introducing parallel processing in order to reduce time to market and to prevent errors at a later stage which would sometimes cause irrevocable damage. Up to now, numerous new concepts, methodologies and tools have been developed, but over concurrent engineering’s 20-year history the situation has changed extensively. Now, industry has to work in the global marketplace and to cope with diversifying requirements and increasing complexities. Such globalization and diversification necessitate collaboration across different fields and across national boundaries. Thus, the new concurrent engineering calls for a systems approach to gain global market competitiveness. Improving Complex Systems Today provides a new insight into concurrent engineering today.
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.
Computers and microprocessors are indispensable in modern technical systems, their deployment spanning the domains automotive, railway, aerospace, and transportation, security, energy supply, telecommunication, critical infrastructures and process ind- tries. They perform tasks that a few decades ago were very difficult if not impossible. As they perform these tasks with increasing efficiency, more and more tasks are shifted from hardware to software, which means that the dependability of computer systems becomes crucial for the safety, security and reliability of technical systems. With the so-called “embedded systems” (becoming more and more intelligent, networked and co-operating with...
This book provides control engineers and workers in industrial and academic research establishments interested in process engineering with a means to build up a practical and functional supervisory control environment and to use sophisticated models to get the best use out of their process data. Several applications to academic and small-scale-industrial processes are discussed and the development of a supervision platform for an industrial plant is presented.
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Most ocean vessels are underactuated but control of their motion in the real ocean environment is essential. Starting with a review of the background on ocean-vessel dynamics and nonlinear control theory, the authors’ systematic approach is based on various nontrivial coordinate transformations coupled with advanced nonlinear control design methods. This strategy is then used for the development and analysis of a number of ocean-vessel control systems with the aim of achieving advanced motion control tasks including stabilization, trajectory-tracking, path-tracking and path-following. Control of Ships and Underwater Vehicles offers the reader: - new results in the nonlinear control of underactuated ocean vessels; - efficient designs for the implementation of controllers on underactuated ocean vessels; - numerical simulations and real-time implementations of the control systems designed on a scale-model ship for each controller developed to illustrate their effectiveness and afford practical guidance.
This book covers all the steps from identification of operations and resources to the transformation of virtual models into real-world algorithms. The matrix-based approach presented here is a solution to the real-time application of control in discrete event systems and flexible manufacturing systems (FMS), and offers a sound practical basis for the design of controllers for manufacturing systems.
Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.
The Internet plays a significant and growing role in real-time industrial manufacturing, scheduling and management. A considerable research effort has led to the development of new technologies that make it possible to use the Internet for supervision and control of industrial processes. Internet-based Control Systems addresses the challenges that need to be overcome before the Internet can be beneficially used not only for monitoring of but also remote control industrial plants. New design issues such as requirement specification, architecture selection and user-interface design are dealt with. Irregular data transmission and data loss and, in extreme cases, whole-system instability may res...