You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand, metamaterials also provide new tools for the design of well-known wave functions such as antennas for electromagnetic waves. The goal of this book is to propose an overview of the ...
This book addresses artificial materials including photonic crystals (PC) and metamaterials (MM). The first part is devoted to design concepts: negative permeability and permittivity for negative refraction, periodic structures, transformation optics. The second part concerns PC and MM in stop band regime: from cavities, guides to high impedance surfaces. Abnormal refraction, less than one and negative, in PC and MM are studied in a third part, addressing super-focusing and cloaking. Applications for telecommunications, lasers and imaging systems are also explored.
Ce livre propose une synthèse des recherches - des concepts jusqu'aux applications - sur les matériaux artificiels, incluant les cristaux photoniques et les métamatériaux. Il expose les enjeux de performance et les défis de fabrication (jusqu'à l'échelle du nanomètre) pour l'exploitation des effets d'ultra-réfraction ou de réfraction négative induits par l'ingénierie généralisée ou localisée de la dispersion sur l'ensemble du spectre électromagnétique (des micro-ondes à l'optique en passant par le térahertz et l'infrarouge). Didactique, Matériaux artificiels analyse les possibilités de l'optique de transformation tels que les mirages optiques, les lentilles parfaites, les tapis magiques et les capes d'invisibilité. Présentés comme potentiels précurseurs de nouveaux systèmes de contrôle de la propagation des ondes et/ou d'imagerie pour les domaines des télécommunications, de la biologie ou de la médecine, ils permettent d'identifier les principaux verrous théoriques et technologiques actuels.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid. It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.
Nuclear Physics 3 presents the applications of various radioisotopes in nuclear medicine, with a focus on radiological imaging methods such as X-rays, γ scintigraphy – PET – MRI and ultrasound, which do not exploit the properties of radiopharmaceuticals. The book then presents the physicochemical and pharmacological properties of radiopharmaceuticals labeled with 99mTc, 201Tl, 18mKr, 18F and the radioisotopes 123I, 125I and 131I used in nuclear medicine. The production chains for the radiotracers studied, as well as their main emissions, are then described in detail, followed by a study of the clearance mechanisms of the radiopharmaceuticals under consideration. Finally, the book describes the principles of myocardial, pulmonary, bone, thyroid, renal and gastric emptying scans using the properties of the radiotracers studied, as well as the principles of prostate brachytherapy using iodine-125 implants and prostate chemotherapy.
This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile probes or nanosatellites. The theoretical models described in Volumes 1, 2 and 3 are used in this volume, applying the cumulant theorem in the mean-field theory framework to interpret the near and mid-infrared spectra of symmetric top molecules, such as ammonia (NH3) and spherical molecules, such as methane (CH4). These molecules can be isolated in their gaseous form or subjected to the environmental constraints of a nano-cage (a substitution site, clathrate, fullerene or zeolite) or surfaces. These methods are not only valuable in the fields of environmental sciences, planetology and astrophysics, but also fit into the framework of data processing and the concept of Big Data.
This book presents a collection of independent mathematical studies, describing the analytical reduction of complex generic problems in the theory of scattering and propagation of electromagnetic waves in the presence of imperfectly conducting objects. Their subjects include: a global method for scattering by a multimode plane; diffraction by an impedance curved wedge; scattering by impedance polygons; advanced properties of spectral functions in frequency and time domains; bianisotropic media and related coupling expressions; and exact and asymptotic reductions of surface radiation integrals. The methods developed here can be qualified as analytical when they lead to exact explicit expressions, or semi-analytical when they drastically reduce the mathematical complexity of studied problems. Therefore, they can be used in mathematical physics and engineering to analyse and model, but also in applied mathematics to calculate the scattered fields in electromagnetism for a low computational cost.
Quantum mechanics is the foundation of modern technology, due to its innumerable applications in physics, chemistry and even biology. This second volume studies Schrödingers equation and its applications in the study of wells, steps and potential barriers. It examines the properties of orthonormal bases in the space of square-summable wave functions and Dirac notations in the space of states. This book has a special focus on the notions of the linear operators, the Hermitian operators, observables, Hermitian conjugation, commutators and the representation of kets, bras and operators in the space of states. The eigenvalue equation, the characteristic equation and the evolution equation of the mean value of an observable are introduced. The book goes on to investigate the study of conservative systems through the time evolution operator and Ehrenfests theorem. Finally, this second volume is completed by the introduction of the notions of quantum wire, quantum wells of semiconductor materials and quantum dots in the appendices.
Subtractive sound synthesis is one of the most widely used techniques in electronic music and in many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation is complex, involving many parameters. It can be enhanced by a variety of effects that give the sound its authenticity, and does not simply imitate musical instruments, but can also transcribe noises present in natural soundscapes or generate entirely synthetic sounds. Synthesizers and Subtractive Sound Synthesis 2 presents practical exercises, ranging from the fundamentals to advanced functionalities. Most of the sound effects applicable to subtractive synthesis are covered: vibrato, phaser, reverb, etc. The final chapters deal with polyphony and arpeggiator-sequences.
Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, Human Exposure to Electromagnetic Fields provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors. The biophysical and biological effects of these fields on the human body are detailed and the exposure limits are recalled. The exposure assessment and the implementation of the appropriate regulation within companies are also covered. Technically and practically, this book is aimed at people with a scientific background, risk prevention actors, health physicians, especially occupational doctors, and equipment designers.