You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 2 analyzes the radiation, scattering and generation of these waves. It studies the emission of bulk or surface waves from sources localized on the surface of an isotropic or anisotropic solid. It then examines the scattering of a longitudinal or transverse elastic wave by one or more cylindrical or spherical heterogeneities. Finally, it explores the methods and devices used to generate and detect elastic waves, using the piezoelectric effect or the interaction with a laser beam. Accompanying figures illustrate these properties, and the text provides the orders of magnitude of some characteristic parameters. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid. It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.
Non Destructive Testing and Non Destructive Evaluation using Ultrasounds covers an important field of applications and requires a wide range of fundamental theoretical, numerical and experimental investigations. In the present volume, the reader will find some relevant research results on wave propagation in complex materials and structures which are concerned with today’s problems on composites, bonding, guided waves, contact or damage, imaging and structural noise. The fifth meeting of the Anglo-French Research Group on "Wave propagation in non homogeneous media with a view to Non Destructive testing" was held in Anglet, France, June 2-6, 2008.
The compilation of this book has been made possible with the help of Didier Cassereau, Bertrand Dubus and John Fritsch with support from the Scientific and Technical Committee of 2015 ICU.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid. It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.
Nuclear Physics 2 explores the applications of various radioisotopes for dating and nuclear medicine imaging. It introduces the theoretical and experimental facts from the observation of the red shift in the spectrum of galaxies (1913), and the discovery of the cosmic microwave background (1965) that led to the validation of the Big Bang model, through which all known chemical elements are created via nucleosynthesis processes. This introduction is followed by a description of the nuclear reactions involved in primordial, stellar, and explosive. The principles of carbon-14, potassium-argon, uranium-thorium and uranium-protactinium dating, along with the principles of lead-210, caesium-137 an...
Subtractive sound synthesis has been one of the most widely used techniques in electronic music and for many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation remains complex, involving many parameters. It can be enriched by a variety of effects that give the sound its authenticity. It does not just imitate musical instruments, but can also transcribe noises present in natural soundscapes, or generate entirely synthetic sounds. Synthesizers and Subtractive Synthesis 1 presents the theoretical basis of a sound phenomenon, the different types of synthesis, the components that are required and present in synthesizers, the working environment specific to the study of subtractive synthesis, and the hardware and software available. After reading the various chapters of this book, readers will have a clear vision of the tools and actions required to grasp the world of subtractive sound.
Nuclear Physics 3 presents the applications of various radioisotopes in nuclear medicine, with a focus on radiological imaging methods such as X-rays, γ scintigraphy – PET – MRI and ultrasound, which do not exploit the properties of radiopharmaceuticals. The book then presents the physicochemical and pharmacological properties of radiopharmaceuticals labeled with 99mTc, 201Tl, 18mKr, 18F and the radioisotopes 123I, 125I and 131I used in nuclear medicine. The production chains for the radiotracers studied, as well as their main emissions, are then described in detail, followed by a study of the clearance mechanisms of the radiopharmaceuticals under consideration. Finally, the book describes the principles of myocardial, pulmonary, bone, thyroid, renal and gastric emptying scans using the properties of the radiotracers studied, as well as the principles of prostate brachytherapy using iodine-125 implants and prostate chemotherapy.
This book is dedicated to the study of the theory of electromagnetism. It is not intended to cover all aspects of the topic, but instead will give a certain perspective, that of its relationship with special relativity. Indeed, special relativity is intrinsic to electromagnetism; thus, this paradigm eliminates some false paradoxes. Electromagnetism also discusses the limit of classical mechanics, and covers problems that arise when phenomena related to the propagation of electromagnetic waves are encountered. These are problems that even the greatest scientists of the last two hundred years have not been able to entirely overcome. This book is directed towards the undergraduate level, and will also support the readers as they move on to advanced technical training, such as an engineering or master's degree.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid. It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.