You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This third volume of a series on Mechanies of Fraeture deals with eraeks in plates and shelIs. It was noted in Volume 2 on three-dimensional eraek problems that additional free surfaees can lead to substantial mathematical complexities, often making the analysis unmanageable. The theory of plates and shelIs forms a part of the theory of elasticity in which eertain physieal assumptions are made on the basis that the distanee between two bounded surfaees, either fiat or eurved, is small in eomparison with the overall dimen sions of the body. In modern times, the broad and frequent applieations of plate- and shell-like struetural members have aeted as a stimulus to whieh engineers and researche...
Pressure Vessel Technology, Volume 3 reviews the practices and trends in pressure vessel technology. This book discusses the tremendous progress in the various fields of pressure vessel technology, including fabrication techniques, ferrous materials, and life expectancy to assure structural integrity. Organized into 11 chapters, this compilation of papers begins with an overview of the fabrication techniques in pressure vessel technology. This text then examines the requirements of the chemical industry for the prevention of catastrophic failure of pressure components. Other chapters consider the major development of pressure vessels for special purposes, high pressure vessels, materials for making pressure vessels, and pressure vessel codes. This book discusses as well the seismic design in the field of pressure vessels and pipings. The final chapter deals with buckling resistance under seismic motions for thin-walled cylindrical vessels, of which predominant mode of failure is shear buckling and bending under horizontal earthquake loadings. This book is a valuable resource for mechanical engineers, project managers, and scientists.
The design of mechanical structures with predictable and improved durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading researchers in the field, this book, along with the complementary books Fatigue of Materials and Structures: Fundamentals and Application to Damage and Design (both also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major ...
Held every four years, the International Congress on Fracture is the premier international forum for the exchange of ideas between scientists and engineers involved in producing and using materials resistant to fracture and fatigue. This major six-volume work which forms the proceedings of the Seventh International Congress on Fracture therefore provides the most comprehensive account available of the current status of research into fracture and fatigue, and the application of this knowledge to the design, fabrication and operation of materials and structures. As such, it will be an essential reference for materials scientists and mechanical, structural, aeronautical and design engineers with an interest in fracture and its prevention.
Peterson's Graduate Programs in the Physical Sciences, Mathematics, Agricultural Sciences, the Environment & Natural Resources contains a wealth of information on colleges and universities that offer graduate work in these exciting fields. The institutions listed include those in the United States and Canada, as well international institutions that are accredited by U.S. accrediting bodies. Up-to-date information, collected through Peterson's Annual Survey of Graduate and Professional Institutions, provides valuable information on degree offerings, professional accreditation, jointly offered degrees, part-time and evening/weekend programs, postbaccalaureate distance degrees, faculty, student...
The papers in this volume represent a considerable cross-section of the field of fracture mechanics, a testimony to the breadth of interest that Mel and Max Williams' friends share with them. Several are expanded versions of papers that were given in special sessions honoring them at the 1997 Ninth International Conference on Fracture Mechanics in Sydney, Australia. The subjects treated in this volume can be classified as follows: dynamic fracture problems as viewed primarily from a classical continuum point of view; analysis of relatively general crack geometrics; fracture problems of polymers and other relatively ductile materials; scaling rules that allow extension of results obtained at one size to be translated into behavior at different size scales; problems dealing with interactions that produce complex stress fields; fracture problems directly appropriate to composite materials; analysis of stress concentrations in anisotropic, elastic solids; and the problem of cracks in thin plates bending. This volume will be of interest to engineers and scientists working on all aspects of the physics and mechanics of fracture.