You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis uses a systems-level approach to study the cellular metabolism, unveiling new mechanisms and responses that were impossible to reach with traditional reductionists procedures. The results reported here have a potential application in areas like metabolic engineering and disease treatment. They could also be used in determining the accuracy of the gene essentiality of new genome-scale reconstructions. Different methods and techniques, within the contexts of Systems Biology and the field known as Complex Networks Analysis have been applied in this work to show different features of the robustness of metabolic networks. The specific issues addressed here range from pure topological aspec ts of the networks themselves to the balance of biochemical fluxes.
Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination ...
I belie ve that the book would provide an overview of the recent developments in the domain of yeast research with some new ideas, which could serve as an inspiration and challenge for researchers in this field. Ne w Delhi Prof. Asis Datta Dec. 24, 2007 F ormer Vice-chancellor, JNU Director, NCPGR (New Delhi) Pr eface Yeasts are eukaryotic unicellular microfungi that are widely distributed in the natural environments. Although yeasts are not as ubiquitous as bacteria in the na- ral environments, they have been isolated from terrestrial, aquatic and atmospheric environments. Yeast communities have been found in association with plants, a- mals and insects. Several species of yeasts have also ...
This book focuses on the interrelationship between nature and the human economy. Building upon his decades of research into classical and Keynesian economics, Tony Aspromourgos here turns his attention to the interrelationship between nature and the human economy. The result is a tightly argued, concise but comprehensive interpretation of that vital issue, undertaken in the framework of a Classical-Keynesian synthesis. The classical dimension is utilization of a surplus approach to production and distribution, and the Keynesian dimension, incorporation of demand-side determination of economic activity levels and growth. In this conception the human economy is understood as a circular flow bu...
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Brachytherapy has become the modality of choice for several cancer localizations, minimizing the possibility of unacceptable risks for healthy tissues and providing a more cost-effective and convenient treatment for patients. Written by leading experts in the physics, development, and implementation of brachytherapy, The Physics of Modern Brachythe
Offering all the latest in the study of neurodegenerative diseases, this book reviews the molecular events initiated by unfolded or misfolded proteins leading to conformational human diseases, especially those found in Parkinson’s and Alzheimer’s diseases.
Summing up almost a decade of biomedical research, this topical and eagerly awaited handbook is the first reference on the topic to incorporate recent breakthroughs in amyloid research. The first part covers the structural biology of amyloid fibrils and pre-fibrillar assemblies, including a description of current models for amyloid formation. The second part looks at the diagnosis and biomedical study of amyloid in humans and in animal models, while the final section discusses pharmacological approaches to manipulating amyloid and also looks at its physiological roles in lower and higher organisms. For Biochemists, Molecular Biologists, Neurobiologists, Neurophysiologists and those working in the Pharmaceutical Industry.