You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Investment and risk management problems are fundamental problems for financial institutions and involve both speculative and hedging decisions. A structured approach to these problems naturally leads one to the field of applied mathematics in order to translate subjective probability beliefs and attitudes towards risk and reward into actual decisions. In Risk and Portfolio Analysis the authors present sound principles and useful methods for making investment and risk management decisions in the presence of hedgeable and non-hedgeable risks using the simplest possible principles, methods, and models that still capture the essential features of the real-world problems. They use rigorous, yet e...
Praise for Robust Portfolio Optimization and Management "In the half century since Harry Markowitz introduced his elegant theory for selecting portfolios, investors and scholars have extended and refined its application to a wide range of real-world problems, culminating in the contents of this masterful book. Fabozzi, Kolm, Pachamanova, and Focardi deserve high praise for producing a technically rigorous yet remarkably accessible guide to the latest advances in portfolio construction." --Mark Kritzman, President and CEO, Windham Capital Management, LLC "The topic of robust optimization (RO) has become 'hot' over the past several years, especially in real-world financial applications. This i...
Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
New developments in measuring, evaluating and managing credit risk are discussed in this volume. Addressing both practitioners in the banking sector and resesarch institutions, the book provides a manifold view on one of the most-discussed topics in finance. Among the subjects treated are important issues, such as: the consequences of the new Basel Capital Accord (Basel II), different applications of credit risk models, and new methodologies in rating and measuring credit portfolio risk. The volume provides an overview of recent developments as well as future trends: a state-of-the-art compendium in the area of credit risk.
Along with case studies, this book presents a step-by-step approach to formulating the resilience of civil infrastructure and energy systems.
A one-stop shop for actuaries and risk managers, this handbook covers general solvency and risk management topics as well issues pertaining to the European Solvency II project. It focuses on the valuation of assets and liabilities, the calculation of capital requirement, and the calculation of the standard formula for the Solvency II project. The author describes valuation and investment approaches, explains how to develop models and measure various risks, and presents approaches for calculating minimum capital requirements based on CEIOPS final advice. Updates on solvency projects and issues are available at www.SolvencyII.nu
This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse qua...
Portfolio theory and much of asset pricing, as well as many empirical applications, depend on the use of multivariate probability distributions to describe asset returns. Traditionally, this has meant the multivariate normal (or Gaussian) distribution. More recently, theoretical and empirical work in financial economics has employed the multivariate Student (and other) distributions which are members of the elliptically symmetric class. There is also a growing body of work which is based on skew-elliptical distributions. These probability models all exhibit the property that the marginal distributions differ only by location and scale parameters or are restrictive in other respects. Very oft...
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
the mathematics of financial modeling & investment management The Mathematics of Financial Modeling & Investment Management covers a wide range of technical topics in mathematics and finance-enabling the investment management practitioner, researcher, or student to fully understand the process of financial decision-making and its economic foundations. This comprehensive resource will introduce you to key mathematical techniques-matrix algebra, calculus, ordinary differential equations, probability theory, stochastic calculus, time series analysis, optimization-as well as show you how these techniques are successfully implemented in the world of modern finance. Special emphasis is placed on t...