You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Investment and risk management problems are fundamental problems for financial institutions and involve both speculative and hedging decisions. A structured approach to these problems naturally leads one to the field of applied mathematics in order to translate subjective probability beliefs and attitudes towards risk and reward into actual decisions. In Risk and Portfolio Analysis the authors present sound principles and useful methods for making investment and risk management decisions in the presence of hedgeable and non-hedgeable risks using the simplest possible principles, methods, and models that still capture the essential features of the real-world problems. They use rigorous, yet e...
None
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, ...
Engineering Management: Meeting the Global Challenges prepares engineers to fulfill their managerial responsibilities, acquire useful business perspectives, and take on the much-needed leadership roles to meet the challenges in the new millennium. Value addition, customer focus, and business perspectives are emphasized throughout. Also underlined are discussions of leadership attributes, steps to acquire these attributes, the areas engineering managers are expected to add value, the web-based tools which can be aggressively applied to develop and sustain competitive advantages, the opportunities offered by market expansion into global regions, and the preparations required for engineering ma...
None
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A la...
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Seit dem Erscheinen der ersten Auflage dieses Werkes (1972) hat sich das Gebiet der kontinuierlichen multivariaten Verteilungen rasch weiterentwickelt. Moderne Anwendungsfelder sind die Erforschung von Hochwasser, Erdbeben, Regenfällen und Stürmen. Entsprechend wurde das Buch überarbeitet und erweitert: Nunmehr zwei Bände beschreiben eine Vielzahl multivariater Verteilungsmodelle anhand zahlreicher Beispiele. (05/00)