Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Recent Advances in Mathematical Analysis
  • Language: en
  • Pages: 470

Recent Advances in Mathematical Analysis

This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.

Stochastic Finance
  • Language: en
  • Pages: 473

Stochastic Finance

This book is an introduction to financial mathematics. The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures.

New Developments in Approximation Theory
  • Language: en
  • Pages: 337

New Developments in Approximation Theory

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Springer

A collection of papers by international contributors describing new developments in the fields of univariate and multivariate approximation theory. This research has applications in areas such as computer-aided geometric design, as applied in engineering and medical technology (e.g. computerized tomography).

Discontinuous Groups of Isometries in the Hyperbolic Plane
  • Language: en
  • Pages: 389

Discontinuous Groups of Isometries in the Hyperbolic Plane

This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.

Trends and Applications in Constructive Approximation
  • Language: en
  • Pages: 300

Trends and Applications in Constructive Approximation

This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics.

Potential Theory on Infinite-Dimensional Abelian Groups
  • Language: en
  • Pages: 193

Potential Theory on Infinite-Dimensional Abelian Groups

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...

Ergodic Theory
  • Language: en
  • Pages: 148

Ergodic Theory

This monograph discusses recent advances in ergodic theory and dynamical systems. As a mixture of survey papers of active research areas and original research papers, this volume attracts young and senior researchers alike. Contents: Duality of the almost periodic and proximal relations Limit directions of a vector cocycle, remarks and examples Optimal norm approximation in ergodic theory The iterated Prisoner’s Dilemma: good strategies and their dynamics Lyapunov exponents for conservative twisting dynamics: a survey Takens’ embedding theorem with a continuous observable

Noncommutative Geometry
  • Language: en
  • Pages: 330

Noncommutative Geometry

This book covers the basics of noncommutative geometry (NCG) and its applications in topology, algebraic geometry, and number theory. The author takes up the practical side of NCG and its value for other areas of mathematics. A brief survey of the main parts of NCG with historical remarks, bibliography, and a list of exercises is included. The presentation is intended for graduate students and researchers with interests in NCG, but will also serve nonexperts in the field. Contents Part I: Basics Model examples Categories and functors C∗-algebras Part II: Noncommutative invariants Topology Algebraic geometry Number theory Part III: Brief survey of NCG Finite geometries Continuous geometries Connes geometries Index theory Jones polynomials Quantum groups Noncommutative algebraic geometry Trends in noncommutative geometry

Elliptic Curves
  • Language: en
  • Pages: 378

Elliptic Curves

The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.

Painlevé Differential Equations in the Complex Plane
  • Language: en
  • Pages: 313

Painlevé Differential Equations in the Complex Plane

This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painlevé transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Bäcklund transformations and higher order analogues, treated separately for each of these six equations. The final chapter offers a short overview of applications of Painlevé equations, including an introduction to their discrete counterparts. Due to the present important role of Painlevé equations in physical applications, this monograph should be of interest to researchers in both mathematics and physics and to graduate students interested in mathematical physics and the theory of differential equations.