Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Dynamics and Control of Multibody Systems
  • Language: en
  • Pages: 488

Dynamics and Control of Multibody Systems

The study of complex, interconnected mechanical systems with rigid and flexible articulated components is of growing interest to both engineers and mathematicians. Recent work in this area reveals a rich geometry underlying the mathematical models used in this context. In particular, Lie groups of symmetries, reduction, and Poisson structures play a significant role in explicating the qualitative properties of multibody systems. In engineering applications, it is important to exploit the special structures of mechanical systems. For example, certain mechanical problems involving control of interconnected rigid bodies can be formulated as Lie-Poisson systems. The dynamics and control of robot...

Algebraic K-theory and Algebraic Number Theory
  • Language: en
  • Pages: 506

Algebraic K-theory and Algebraic Number Theory

This volume contains the proceedings of a seminar on Algebraic $K$-theory and Algebraic Number Theory, held at the East-West Center in Honolulu in January 1987. The seminar, which hosted nearly 40 experts from the U.S. and Japan, was motivated by the wide range of connections between the two topics, as exemplified in the work of Merkurjev, Suslin, Beilinson, Bloch, Ramakrishnan, Kato, Saito, Lichtenbaum, Thomason, and Ihara. As is evident from the diversity of topics represented in these proceedings, the seminar provided an opportunity for mathematicians from both areas to initiate further interactions between these two areas.

Representation Theory, Group Rings, and Coding Theory
  • Language: en
  • Pages: 392

Representation Theory, Group Rings, and Coding Theory

Dedicated to the memory of the Soviet mathematician S D Berman (1922-1987), this work covers topics including Berman's achievements in coding theory, including his pioneering work on abelian codes and his results on the theory of threshold functions.

Lie Algebras and Related Topics
  • Language: en
  • Pages: 352

Lie Algebras and Related Topics

Discusses the problem of determining the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic $p>7$. This book includes topics such as Lie algebras of prime characteristic, algebraic groups, combinatorics and representation theory, and Kac-Moody and Virasoro algebras.

Statistical Inference from Stochastic Processes
  • Language: en
  • Pages: 406

Statistical Inference from Stochastic Processes

Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$
  • Language: en
  • Pages: 158

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$

The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algeb...

Enumerative Algebraic Geometry
  • Language: en
  • Pages: 292

Enumerative Algebraic Geometry

1989 marked the 150th anniversary of the birth of the great Danish mathematician Hieronymus George Zeuthen. Zeuthen's name is known to every algebraic geometer because of his discovery of a basic invariant of surfaces. However, he also did fundamental research in intersection theory, enumerative geometry, and the projective geometry of curves and surfaces. Zeuthen's extraordinary devotion to his subject, his characteristic depth, thoroughness, and clarity of thought, and his precise and succinct writing style are truly inspiring. During the past ten years or so, algebraic geometers have reexamined Zeuthen's work, drawing from it inspiration and new directions for development in the field. The 1989 Zeuthen Symposium, held in the summer of 1989 at the Mathematical Institute of the University of Copenhagen, provided a historic opportunity for mathematicians to gather and examine those areas in contemporary mathematical research which have evolved from Zeuthen's fruitful ideas. This volume, containing papers presented during the symposium, as well as others inspired by it, illuminates some currently active areas of research in enumerative algebraic geometry.

$p$-Adic Methods in Number Theory and Algebraic Geometry
  • Language: en
  • Pages: 254

$p$-Adic Methods in Number Theory and Algebraic Geometry

Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.

Representation Theory and Number Theory in Connection with the Local Langlands Conjecture
  • Language: en
  • Pages: 282

Representation Theory and Number Theory in Connection with the Local Langlands Conjecture

The Langlands Program summarizes those parts of mathematical research belonging to the representation theory of reductive groups and to class field theory. These two topics are connected by the vision that, roughly speaking, the irreducible representations of the general linear group may well serve as parameters for the description of all number fields. In the local case, the base field is a given $p$-adic field $K$ and the extension theory of $K$ is seen as determined by the irreducible representations of the absolute Galois group $G_K$ of $K$. Great progress has been made in establishing correspondence between the supercuspidal representations of $GL(n,K)$ and those irreducible representat...

Mathematics of Nonlinear Science
  • Language: en
  • Pages: 168

Mathematics of Nonlinear Science

Contains the proceedings of an AMS Special Session on the Mathematics of Nonlinear Science, held in Phoenix in January 1989. The area of research encompasses a large and rapidly growing set of ideas concerning the relationship of mathematics to science, in which the fundamental laws of nature are extended beyond common sense into new areas where the dual aspects of order and chaos abound.