You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized applications of these detectors, with a particular emphasis to the activation analysis. These topics...
The Second Edition of Practical Gamma-Ray Spectrometry has been completely revised and updated, providing comprehensive coverage of the whole gamma-ray detection and spectrum analysis processes. Drawn on many years of teaching experience to produce this uniquely practical volume, issues discussed include the origin of gamma-rays and the issue of quality assurance in gamma-ray spectrometry. This new edition also covers the analysis of decommissioned nuclear plants, computer modelling systems for calibration, uncertainty measurements in QA, and many more topics.
Integrating aspects of engineering, application physics, and medical science, Solid-State Radiation Detectors: Technology and Applications offers a comprehensive review of new and emerging solid-state materials-based technologies for radiation detection. Each chapter is structured to address the current advantages and challenges of each material and technology presented, as well as to discuss novel research and applications. Featuring contributions from leading experts in industry and academia, this authoritative text: Covers modern semiconductors used for radiation monitoring Examines CdZnTe and CdTe technology for imaging applications including three-dimensional capability detectors Highli...
Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and neutrons. The underpinning physics of different detector technologies is presented, and their performance is compared and contrasted. Detector technology likely to be encountered in contemporary international laboratories is also emphasized. There is a strong focus on experimental design and mapping detector technology to the needs of a particular measurement problem. This book will be invaluable to PhD students in experimental nuclear physics and nuclear technology, as well as undergraduate students encountering projects based on radiation detection for the first time. Key Features Provides clear, concise descriptions of key detection techniques Describes detector types with "telescopic depth", so readers can go as deep as they wish Covers real-world applications including short case studies in industry
This book is a comprehensive guide to the current state-of-the-art science and technology involved in the analysis and development of gamma-ray nuclear materials for commercial, medical, industrial, military and space applications. It reviews the current and upcoming materials and material-based technologies for gamma-ray detectors, as well as their growth process in various forms, such as single crystals, films, and ceramics. Thoroughly compiled, it is ideal for graduate students, engineers, technicians, scientists and managers. It brings to both novice and advanced readers all the topics required to jump-start investigations on gamma-ray materials and their growth.
Choice Recommended Title, July 2020 Bringing together material scattered across many disciplines, Semiconductor Radiation Detectors provides readers with a consolidated source of information on the properties of a wide range of semiconductors; their growth, characterization and the fabrication of radiation sensors with emphasis on the X- and gamma-ray regimes. It explores the promise and limitations of both the traditional and new generation of semiconductors and discusses where the future in semiconductor development and radiation detection may lie. The purpose of this book is two-fold; firstly to serve as a text book for those new to the field of semiconductors and radiation detection and measurement, and secondly as a reference book for established researchers working in related disciplines within physics and engineering. Features: The only comprehensive book covering this topic Fully up-to-date with new developments in the field Provides a wide-ranging source of further reference material
Gamma-Ray Spectrometry of Rocks: Methods in Geochemistry and Geophysics provides information pertinent to the fundamental aspects of the gamma-ray spectrometry of rocks. This book discusses the increasing interest in using gamma spectrometry in the search for uranium ore. Organized into seven chapters, this book begins with an overview of the approximate frequency and wave length of electromagnetic radiations. This text then examines the quantitative detection of X and gamma photons, which is based upon their interactions with matter. Other chapters consider the inorganic scintillation crystals as the most favorable detectors due to its requirement of a high intrinsic efficiency. This book discusses as well the shape of the spectrum of a monoenergetic gamma-ray beam, which is dependent on the photon energy. The final chapter deals with the determination of the abundances of natural radioisotopes and their stable end products in a rock or mineral. This book is a valuable resource for radiological health physicists, chemists, geochemists, and exploration geologists.