You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Known for its comprehensive coverage and up-to-date literature citations, this classic text provides students and instructors with the most complete coverage available of radiation detection and measurement. Over the decade that has passed since the publication of the 3rd edition, technical developments continue to enhance the instruments and techniques available for the detection and spectroscopy of ionizing radiation. The Fourth Edition of this invaluable resource incorporates the latest developments and cutting-edge technologies to make this the most up-to-date guide to the field available: ? Covers many new materials that are emerging as scintillators that can achieve energy resolution that is better by a factor of two compared with traditional materials ? Presents new material on ROC curves, micropattern gas detectors, new sensors for scintillation light, thick film semiconductors, and digital techniques in detector pulse processing ? Includes updated discussions on TLDs, neutron detectors, cryogenic spectrometers, radiation backgrounds, and the VME instrumentation standard
A Classic Text on Radiation Detection and Measurement Now Updated and Expanded Building on the proven success of this widely-used text, the Third Edition will provide you with a clear understanding of the methods and instrumentation used in the detection and measurement of ionizing radiation. It provides in-depth coverage of the basic principles of radiation detection as well as illustrating their application in a full set of modern instruments. In addition to a complete description of well-established detection and spectroscopic methods, many recently developed approaches are also explored. These include extensive new discussions of semiconductor detectors with unique properties, recently d...
This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature.
Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
The second edition of a bestseller, this book presents the latest innovative research methods that help break new ground by applying patterns, reuse, and design science to research. The book relies on familiar patterns to provide the solid fundamentals of various research philosophies and techniques as touchstones that demonstrate how to innovate research methods. Filled with practical examples of applying patterns to IT research with an emphasis on reusing research activities to save time and money, this book describes design science research in relation to other information systems research paradigms such as positivist and interpretivist research.
A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.
Written by chemists for chemists, this is a comprehensive guide to the important radionuclides as well as techniques for their separation and analysis. It introduces readers to the important laboratory techniques and methodologies in the field, providing practical instructions on how to handle nuclear waste and radioactivity in the environment.
Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, this monograph introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.
Elements of Neutron Interaction Theory is a first-year textbook for graduate students in nuclear engineering, dealing with the interactions of neutrons, photons, and charged particles with nuclei, atoms, and electrons. The aim of the book is to present, as simply as possible, those aspects of neutron interaction theory which follow directly from conservation laws and elementary quantum mechanics. It is intended to be understood by anyone who has obtained the equivalent of a bachelor's degree in physics, chemistry, or one of the engineering disciplines. No mathematical background beyond differential equations and elementary vector analysis and no physics background beyond elementary modern physics is assumed.
Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented appro...