You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Illustrations and simple text teach young readers about blood and the circulatory system.
Due to their complexity and diversity, understanding the structure of textile fibres is of key importance. This authoritative two-volume collection provides a comprehensive review of the structure of an extensive range of textile fibres.Volume 1 begins with an introductory set of chapters on fibre structure and methods to characterise fibres. The second part of the book covers the structure of manufactured polymer fibres such as polyester, polyamides, polyolefin, elastomeric and aramid fibres as well as high-modulus, high-tenacity polymer fibres. Chapters discuss fibre formation during processing and how this affects fibre structure and mechanical properties. A companion volume reviews natur...
Tissue engineering is a multidisciplinary field incorporating the principles of biology, chemistry, engineering, and medicine to create biological substitutes of native tissues for scientific research or clinical use. Specific applications of this technology include studies of tissue development and function, investigating drug response, and tissue repair and replacement. This area is rapidly becoming one of the most promising treatment options for patients suffering from tissue failure. This abundantly illustrated and well-structured guide serves as a reference for all clinicians and researchers dealing with tissue engineering issues in their daily practice.
None
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.
This unique volume presents the recent advances in tissue regeneration. The authors are all active researchers in their respective fields with extensive experiences. The focus of the book is on the use of stem cells and nano-structured biomaterials for tissue regeneration/tissue engineering. It includes the use of stem cells, naturally derived extracellular matrix (ECM), synthetic biomimetic nano-fibers, synthetic nano-structured ceramics and synthetic nano-structured polymer/ceramic composites that can help/promote tissue regeneration. Methods on how to produce these nano-structured biomaterials are also discussed in several chapters. Future challenges and perspectives in the field of regenerative medicine (tissue regeneration) are also discussed.
None