You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Phylogenetics often uncovers contradicting hypotheses regarding the relationships within the same group of organisms, a phenomenon known since the beginning of the molecular systematics era. While, historically, single marker-based analyses produced discordance, nowadays entire cellular genomes or portions of the same genomic compartment conflict with others or the rest, respectively. In contrast to the beginning of the molecular systematics era, when adding markers and taxa offered a way out of systematic errors, genome inference-based incongruences cannot be addressed and explained easily. Disagreeing phylogenomic hypotheses might originate from various evolutionary processes, including but not limited to hybridization or incomplete lineage sorting, thereby leading to gene tree-versus species tree-associated discrepancies. Today, this can be expanded to genome discordance, where phylogenomic signals of organellar genomes (plastid, mitochondrial) and the nuclear genome disagree due to intrinsically different coalescent paths or phenomena like organelle capture.
The Editorial Office of Frontiers in Plant Science would like to thank all the Chief Editors, Associate Editors and Review Editors that played an integral part in Frontiers’ innovative Collaborative Peer-Review process in 2020. In particular, we would like to recognize and thank Prof. Joshua L. Heazlewood – our now former Field Chief Editor, for his commitment, support and enthusiasm for the Plant Science field. Josh’s dedication and leadership has helped Frontiers in Plant Science become the most cited journal in the field with a strong editorial community. Looking forward, we’re excited to welcome Prof. Yunde Zhao, as our new Field Chief Editor in 2021. Having been with Frontiers in Plant Science since 2017, Yunde has contributed extensively to the development of the journal and will continue to ensure the journal goes from strength to strength.
Thanks to the progress made in instruments and techniques, the methods in physical chemistry have developed rapidly over the past few decades, making them increasingly valuable for scientists of many disciplines. These two must-have volumes meet the needs of the scientific community for a thorough overview of all the important methods currently used. As such, this work bridges the gap between standard textbooks and review articles, covering a large number of methods, as well as the motivation behind their use. A uniform approach is adopted throughout both volumes, while the critical comparison of the advantages and disadvantages of each method makes this a valuable reference for physical chemists and other scientists working with these techniques.
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so...
Nuclear Magnetic Resonance (NMR) spectroscopy is the most powerful technique for characterization of biomolecular structures at atomic resolution in the solution state. This timely book, entitled "Biomolecular NMR Spectroscopy," focuses on the latest state-of-the-art NMR techniques for characterization of biological macromolecules in the solid and solution state. The editors, Dr. Andrew Dingley (University of Auckland, New Zealand) and Dr. Steven Pascal (Massey University, New Zealand) have organized the book into four sections, covering the following topics: sample preparation, structure and dynamics of proteins, structure and dynamics of nucleic acids and protein-nucleic acid complexes, and rapid and hybrid techniques--
This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.
What was the effect of the Reformation movement on the parishioners of the German countryside? This book examines the reform movement at the level of its implementation - the rural parish. Investigation of the Reformation and the sixteenth-century parish reveals the strength of tradition and custom in village life and how this parish culture obstructed and frustrated the efforts of the Lutheran reformers. The Reformation was not passively adopted by the rural inhabitants. On the contrary, the parishioners manipulated the reform movement to serve their own ends. Parish documentation reveals that the system of parish rule diffused the disciplinary aims of the church and rendered the pastors impotent. A look at parish beliefs suggests that the nature of parish thought worked to undermine the main tenets of the Lutheran faith, and that the legacy of the Reformation was a dialogue between these two realms of experience.