Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Developments in Global Optimization
  • Language: en
  • Pages: 350

Developments in Global Optimization

In recent years global optimization has found applications in many interesting areas of science and technology including molecular biology, chemical equilibrium problems, medical imaging and networks. The collection of papers in this book indicates the diverse applicability of global optimization. Furthermore, various algorithmic, theoretical developments and computational studies are presented. Audience: All researchers and students working in mathematical programming.

Numerical Computations: Theory and Algorithms
  • Language: en
  • Pages: 634

Numerical Computations: Theory and Algorithms

The two-volume set LNCS 11973 and 11974 constitute revised selected papers from the Third International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2019, held in Crotone, Italy, in June 2019. This volume, LNCS 11973, consists of 34 full and 18 short papers chosen among papers presented at special streams and sessions of the Conference. The papers in part I were organized following the topics of these special sessions: approximation: methods, algorithms, and applications; computational methods for data analysis; first order methods in optimization: theory and applications; high performance computing in modelling and simulation; numbers, algorithms, and applications; optimization and management of water supply.

Learning and Intelligent Optimization
  • Language: en
  • Pages: 423

Learning and Intelligent Optimization

This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 15, held in Athens, Greece, in June 2021. The 30 full papers presented have been carefully reviewed and selected from 35 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components.

Learning and Intelligent Optimization
  • Language: en
  • Pages: 443

Learning and Intelligent Optimization

This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 14, held in Athens, Greece, in May 2020. The 37 full papers presented together with one invited paper have been carefully reviewed and selected from 75 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components. Due to the COVID-19 pandemic, LION 14 was not held as a physical meeting.

Learning and Intelligent Optimization
  • Language: en
  • Pages: 487

Learning and Intelligent Optimization

  • Type: Book
  • -
  • Published: 2018-12-31
  • -
  • Publisher: Springer

This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Conference on Learning and Intelligent Optimization, LION 12, held in Kalamata, Greece, in June 2018. The 28 full papers and 12 short papers presented have been carefully reviewed and selected from 62 submissions. The papers explore the advanced research developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning.

Machine Learning, Optimization, and Data Science
  • Language: en
  • Pages: 777

Machine Learning, Optimization, and Data Science

This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.

Dynamics of Mathematical Models in Biology
  • Language: en
  • Pages: 154

Dynamics of Mathematical Models in Biology

  • Type: Book
  • -
  • Published: 2016-11-03
  • -
  • Publisher: Springer

This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods f...

Hybrid Solutions for the Modelling of Complex Environmental Systems
  • Language: en
  • Pages: 186

Hybrid Solutions for the Modelling of Complex Environmental Systems

Systems studied in environmental science, due to their structure and the heterogeneity of the entities composing them, often exhibit complex dynamics that can only be captured by hybrid modeling approaches. While several concurrent definitions of “hybrid modeling” can be found in the literature, it is defined here broadly as the approach consisting in coupling existing modelling paradigms to achieve a more accurate or efficient representation of systems. The need for hybrid models generally arises from the necessity to overcome the limitation of a single modeling technique in terms of structural flexibility, capabilities, or computational efficiency. This book brings together experts in the field of hybrid modelling to demonstrate how this approach can address the challenge of representing the complexity of natural systems. Chapters cover applied examples as well as modeling methodology.

Large-scale Kernel Machines
  • Language: en
  • Pages: 409

Large-scale Kernel Machines

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: MIT Press

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale ...

Bayesian Scientific Computing
  • Language: en
  • Pages: 295

Bayesian Scientific Computing

The once esoteric idea of embedding scientific computing into a probabilistic framework, mostly along the lines of the Bayesian paradigm, has recently enjoyed wide popularity and found its way into numerous applications. This book provides an insider’s view of how to combine two mature fields, scientific computing and Bayesian inference, into a powerful language leveraging the capabilities of both components for computational efficiency, high resolution power and uncertainty quantification ability. The impact of Bayesian scientific computing has been particularly significant in the area of computational inverse problems where the data are often scarce or of low quality, but some characteri...