You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses a significant area of mathematics education research in the last two decades and presents the types of semiotic theories that are employed in mathematics education. Following on the summary of significant issues presented in the Topical Survey, Semiotics in Mathematics Education, this book not only introduces readers to semiotics as the science of signs, but it also elaborates on issues that were highlighted in the Topical Survey. In addition to an introduction and a closing chapter, it presents 17 chapters based on presentations from Topic Study Group 54 at the ICME-13 (13th International Congress on Mathematical Education). The chapters are divided into four major sections, each of which has a distinct focus. After a brief introduction, each section starts with a chapter or chapters of a theoretical nature, followed by others that highlight the significance and usefulness of the relevant theory in empirical research.
This volume discusses semiotics in mathematics education as an activity with a formal sign system, in which each sign represents something else. Theories presented by Saussure, Peirce, Vygotsky and other writers on semiotics are summarized in their relevance to the teaching and learning of mathematics. The significance of signs for mathematics education lies in their ubiquitous use in every branch of mathematics. Such use involves seeing the general in the particular, a process that is not always clear to learners. Therefore, in several traditional frameworks, semiotics has the potential to serve as a powerful conceptual lens in investigating diverse topics in mathematics education research. Topics that are implicated include (but are not limited to): the birth of signs; embodiment, gestures and artifacts; segmentation and communicative fields; cultural mediation; social semiotics; linguistic theories; chains of signification; semiotic bundles; relationships among various sign systems; intersubjectivity; diagrammatic and inferential reasoning; and semiotics as the focus of innovative learning and teaching materials.
This book comprises the Proceedings of the 12th International Congress on Mathematical Education (ICME-12), which was held at COEX in Seoul, Korea, from July 8th to 15th, 2012. ICME-12 brought together 3500 experts from 92 countries, working to understand all of the intellectual and attitudinal challenges in the subject of mathematics education as a multidisciplinary research and practice. This work aims to serve as a platform for deeper, more sensitive and more collaborative involvement of all major contributors towards educational improvement and in research on the nature of teaching and learning in mathematics education. It introduces the major activities of ICME-12 which have successfull...
The year's finest mathematics writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here Evelyn Lam...
The diversity of research domains and theories in the field of mathematics education has been a permanent subject of discussions from the origins of the discipline up to the present. On the one hand the diversity is regarded as a resource for rich scientific development on the other hand it gives rise to the often repeated criticism of the discipline’s lack of focus and identity. As one way of focusing on core issues of the discipline the book seeks to open up a discussion about fundamental ideas in the field of mathematics education that permeate different research domains and perspectives. The book addresses transformation as one fundamental idea in mathematics education and examines it from different perspectives. Transformations are related to knowledge, related to signs and representations of mathematics, related to concepts and ideas, and related to instruments for the learning of mathematics. The book seeks to answer the following questions: What do we know about transformations in the different domains? What kinds of transformations are crucial? How is transformation in each case conceptualized?
This third edition of the Handbook of International Research in Mathematics Education provides a comprehensive overview of the most recent theoretical and practical developments in the field of mathematics education. Authored by an array of internationally recognized scholars and edited by Lyn English and David Kirshner, this collection brings together overviews and advances in mathematics education research spanning established and emerging topics, diverse workplace and school environments, and globally representative research priorities. New perspectives are presented on a range of critical topics including embodied learning, the theory-practice divide, new developments in the early years, educating future mathematics education professors, problem solving in a 21st century curriculum, culture and mathematics learning, complex systems, critical analysis of design-based research, multimodal technologies, and e-textbooks. Comprised of 12 revised and 17 new chapters, this edition extends the Handbook’s original themes for international research in mathematics education and remains in the process a definitive resource for the field.
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions o...
This collection of various texts on Karl Marx and Mathematics is the revised and extended second edition of the Special Supplement to Karl Marx, Mathematical Manuscripts (1994; Calcutta: Viswakos) titled Marx and Mathematics. The sources of the texts included in the three parts of this collection and, some biographical information about their respective authors have been indicated at the end of each text. The emergence and development of the Ethnomathematics movement continue to change our understanding of the history of evolution of plural mathematics on planet earth since the Neolithic age. Rediscovery and study of some of the neglected source texts have further energized investigations on...
Dieses Handbuch gibt einen aktuellen Überblick über Forschungsgebiete der Mathematikdidaktik. In 26 Kapiteln stellen führende Vertreterinnen und Vertreter der Disziplin Diskussionsstände zu Mathematik als Bildungsgegenstand, als Lehr- und Lerninhalt, als Denkprozess sowie zu Mathematik im Unterrichtsprozess und zur Mathematikdidaktik als Forschungsdisziplin dar. Seit der 1. Auflage des Handbuchs im Jahr 2015 hat sich die Forschung auf allen dargestellten Gebieten so weiterentwickelt, dass eine gründliche Überarbeitung und Erweiterung erforderlich wurde. An der 2. Auflage haben zahlreiche neue Autorinnen und Autoren mitgewirkt, einzelne Kapitel wurden ergänzt, Themengebiete der Primars...
Mathematik ist überall. Mathematik ist für alle. Aufgrund ihres hohen Rangs in der Wissensgesellschaft ist Mathematik ein unverzichtbarer Bestandteil einer allgemeinen Bildung, was für die Schule bedeutet, den Wert eines an den Strukturen und Wesenszügen von Mathematik orientierten Denkens für alle zur Geltung zu bringen. In bildungstheoretischer Sicht stellen Mathematik und mathematisches Denken einen spezifischen, unersetzbaren Modus der Welterschließung dar, der für die kognitive Entwicklung von fundamentaler Bedeutung ist. Mathematisches Denken ist daher in Vorschul- und Schulzeit kontinuierlich und systematisch zu fördern. Was das Nicht-Substituierbare des durch mathematisches D...