You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum mesoscopic physics covers a whole class in interference effects related to the propagation of waves in complex and random media. These effects are ubiquitous in physics, from the behaviour of electrons in metals and semiconductors to the propagation of electromagnetic waves in suspensions such as colloids, and quantum systems like cold atomic gases. A solid introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, highlighting the common aspects of the various optical and electronic phenomena involved and presenting a large number of experimental results. With over 200 figures, and exercises throughout, the book was originally published in 2007 and is ideal for graduate students in physics, electrical engineering, applied physics, acoustics and astrophysics. It will also be an interesting reference for researchers.
Gives a fresh and modern approach to the field. It is a textbook on the principles of the theory, its mathematical framework and its first applications. It constantly refers to modern and practical developments, tunneling microscopy, quantum information, Bell inequalities, quantum cryptography, Bose-Einstein condensation and quantum astrophysics. The book also contains 92 exercises with their solutions.
Submicron and nanoscale systems have risen on the research agenda. Exploiting the technological potential offered by these exotic materials requires a fundamental understanding of basic physical phenomena on the mesoscopic and nanoscopic scales. This book, written by leading experts in the field, covers such topics as the Kondo effect, electron transport, disorder and quantum coherence with electron-electron interaction, persistent current and thermoelectric phenomena, in quantum dots, quantum wires, carbon nanotubes and more.
This thesis explores several fundamental topics in mesoscopic circuitries that incorporate few electronic conduction channels. It reports a series of long-awaited experiments that establish a new state of the art. The first experiments address the quantized character of charge in circuits. We demonstrate the charge quantization criterion, observe the predicted charge quantization scaling and a crossover toward a universal behavior as temperature is increased. The second set of experiments addresses the unconventional quantum critical physics that arises in the multichannel Kondo model. We observe the predicted universal Kondo fixed points and validate the numerical renormalization group scaling curves. Away from the quantum critical point, we obtain a direct visualization of the development of a second-order quantum phase transition.
The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay with disorder. Going down to even smaller scales, molecules such as carbon nanotubes, fullerenes or hydrogen molecules can now be inserted in nanocircuits. Measurements of transport through a single chain of atoms have been performed as well. Much progress has also been made in the design and fabrication of superconducting and hybrid nanostructures, be they normal/...
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice,...
This overview of the state of the art of research in an exciting field mainly emphasizes the development of a semiclassical formalism that allows one to incorporate the effect of dissipation and decoherence in a precise, yet tractable way into the quantum mechanics of classically chaotic systems.
This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.
Professor Yoseph (Joe) Imry, an early initiator of mesoscopic physics, has been among the leaders in this field for several decades. This book contains articles by leading (theoretical and experimental) scientists working in nanoscience and in related fields. Most of the contributions, consisting both reviews of the state of the art and new results, summarize invited talks given at two conferences held in honor of Imry's 70th birthday: the 101st Statistical Mechanics Conference (Rutgers University, May 10?12, 2009), and Perspectives of Mesoscopic Physics (Weizmann Institute of Science, May 31?June 1, 2009). This book covers a broad range of active research in nanoscience, including topics like quantum interference, decoherence, electron correlations, nano superconductors and nano magnets, nonequilibrium and glassy behavior.