You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume represents a continuation of the Polymer Science and Technology series edited by Dr. D. M. Brewis and Professor D. Briggs. The theme of the series is the production of a number of stand alone volumes on various areas of polymer science and technology. Each volume contains short articles by a variety of expert contributors outlining a particular topic and these articles are extensively cross referenced. References to related topics included in the volume are indicated by bold text in the articles, the bold text being the title of the relevant article. At the end of each article there is a list of bibliographic references where interested readers can obtain further detailed informa...
Whereas the current plane wave, homogeneous flow detonation physics is an excellent engineering tool for numerical predictions under given conditions, the multi-hot-spot-model is an additional tool for analyzing phenomena that cannot be explained by classical calculations. The real benefit comes from being able to understand, without any artificial assumptions, the whole phenomenology of detonations and explosions. By specifying pressure generating mechanisms, one is able to see that the current treatment of the detonics of energetic materials is only a very special - but powerful - case of explosion events and hazards. It becomes clear that physical explosions must be taken into account in any safety considerations. In these terms it is easy to understand why even liquid carbon dioxide and inert silo materials can explode. A unique collection of unexpected events, which might surprise even specialists, has resulted from the evaluation of the model.-
None
PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UH...
These proceedings of EXPLOMET 90, the International Conference on the Materials Effects of Shock-Wave and High-Strain-Rate Phenomena, held August 1990, in La Jolla, California, represent a global and up-to-date appraisal of this field. Contributions (more than 100) deal with high-strain-rate deforma
Advances in Structural Adhesive Bonding, Second Edition reviews developments in adhesive bonding for a range of advanced structural engineering applications. This new edition has been fully revised to include the latest advances in materials, testing and modeling methods, lifecycle considerations, and industrial implementation. Sections review advances in commonly used groups of structural adhesives, covering epoxy, acrylic, anaerobic and cyanoacrylate, polyurethane, and silicone adhesives, along with toughening. Other chapters cover various types of adherends and pre-treatment methods for structural materials, including metals, plastics, composites, wood and joint design and testing, includ...
The Light Metals symposia at the TMS Annual Meeting & Exhibition present the most recent developments, discoveries, and practices in primary aluminum science and technology. The annual Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. The 2017 collection includes papers from the following symposia:Alumina and BauxiteAluminum Alloys, Processing, and CharacterizationAluminum Reduction TechnologyCast Shop TechnologyCast Shop Technology: Recycling and Sustainability Joint SessionElectrode TechnologyThe Science of Melt Refining: An LMD Symposium in Honor of Christian Simensen and Thorvald Abel Engh
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
Pt. A. Statistical mechanics, magnetism, quantum and nonlinear dynamics. The groundstates and phases of the two-dimensional fully frustrated XY model / P. Minnhagen, S. Bernhardsson and B.J. Kim. 2D Ising model with competing interactions and its application to clusters and arrays of [symbol]-rings, graphene and adiabatic quantum computing / A. O'Hare, F.V. Kusmartsev and K.I. Kugel. Concerning the equation of state for a partially ionized system / G.A. Baker Jr. Quasiclassical Fourier path integral quantum correction terms to the kinetic energy of interacting quantum many-body systems / K.A. Gernoth. Ergodicity and chaos in a system of harmonic oscillators / M.H. Lee. Chaotic modes in scale...
The first edition of this book had been written with the special aim to provide the necessary information for an understanding of the deformation and scission of chain molecules and its role in polymer fracture. In this field there had been an intense ac tivity in the sixties and early seventies. The new results from spectroscopical (ESR, IR) and fracture mechanics methods reported in the first edition had complemented in a very successful way the conventional interpretations of fracture behavior. The extremely friendly reception of this book by the polymer community has shown that the subject was timely chosen and that the treatment had satisfied a need. In view of the importance of a molec...