You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A glorious period of Hungarian mathematics started in 1900 when Lipót Fejér discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume.
This fascinating book written by Ali Sanayei and Otto E. Rössler is not a classic scientific publication, but a vivid dialogue on science, philosophy and the interdisciplinary intersections of science and technology with biographic elements. Chaotic Harmony: A Dialog about Physics, Complexity and Life represents a discussion between Otto Rössler and his colleague and student, focusing on the different areas of science and highlights their mutual relations. The book's concept of interdisciplinary dialogue is unusual nowadays although it has a long tradition in science. It provides insight not only into interesting topics that are often closely linked, but also into the mind of a prominent s...
This book is an authoritative and unique reference for the history of chaos theory, told by the pioneers themselves. It also provides an excellent historical introduction to the concepts. There are eleven contributions, and six of them are published here for the first time — two by Steve Smale, three by Yoshisuke Ueda, and one each by Ralph Abraham, Edward Lorenz, Christian Mira, Floris Takens, T Y Li and James A Yorke, and Otto E Rossler.
This book is based on the outcome of the “2012 Interdisciplinary Symposium on Complex Systems” held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexit...
What do yin-yang and the Lorenzian butterfly in chaos have in common? The outside perspective. Only by going very far outside — beyond the end of the world — do certain aspects of the world become intelligible. The computer makes it possible today to go after the interface. What does the world look like if you are an internally chaotic part? Is the world just a difference, an interface, a forcing function? Is it possible to identify those features which exist only from the inside? How far does the meta-unmaskability go? Is quantum mechanics a virtual reality? Can the micro-interface be manipulated? Such questions are tackled in this fascinating book.
This book is an authoritative and unique reference for the history of chaos theory, told by the pioneers themselves. It also provides an excellent historical introduction to the concepts. There are eleven contributions, and six of them are published here for the first time ? two by Steve Smale, three by Yoshisuke Ueda, and one each by Ralph Abraham, Edward Lorenz, Christian Mira, Floris Takens, T Y Li and James A Yorke, and Otto E Rossler.
This distinctly nonclassical treatment focuses on developing aspects that differ from the theory of ordinary metric spaces, working directly with probability distribution functions rather than random variables. The two-part treatment begins with an overview that discusses the theory's historical evolution, followed by a development of related mathematical machinery. The presentation defines all needed concepts, states all necessary results, and provides relevant proofs. The second part opens with definitions of probabilistic metric spaces and proceeds to examinations of special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. Throughout, the authors focus on developing aspects that differ from the theory of ordinary metric spaces, rather than simply transferring known metric space results to a more general setting.
The main topics of this proceedings stress the interactions between the theory of functional equations and the theory of dynamical systems. A total of 38 invited lectures are included.
The journal aequationes mathematicae publishes papers in pure and applied mathematics and, in particular, articles on functional equations, combinatorics and dynamical systems. Its 50th volume appears in 1995. To mark this occasion, we are publishing in book form a repre sentative collection of outstanding survey papers assembled for our anniversary issue of aequationes mathematicae. The articles by Quackenbush, Targonski and Moszner discuss composition of functions from different points of view: universal algebra, dynamical systems (iteration) and functional equa tions. The Ono-Robbins-Wahl and the Vince papers, on number theory and tiles, respectively, are thematically linked by lattices. ...