You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY AND CLIMATE CHANGE Written and edited by a global team of experts in the field, this groundbreaking new volume presents the concepts and fundamentals of using artificial intelligence in renewable energy and climate change, while also covering the practical applications that can be utilized across multiple disciplines and industries, for the engineer, the student, and other professionals and scientists. Renewable energy and climate change are two of the most important and difficult issues facing the world today. The state of the art in these areas is changing rapidly, with new techniques and theories coming online seemingly every day. It is importa...
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
This book is a tribute to Kenichi Morita’s ideas and achievements in theoretical computer science, reversibility and computationally universal mathematical machines. It offers a unique source of information on universality and reversibility in computation and is an indispensable book for computer scientists, mathematicians, physicists and engineers. Morita is renowned for his works on two-dimensional language accepting automata, complexity of Turing machines, universality of cellular automata, regular and context-free array grammars, and undecidability. His high-impact works include findings on parallel generation and parsing of array languages by means of reversible automata, construction...
This book addresses topics of mobile multi-agent systems, pattern formation, biological modelling, artificial life, unconventional computation, and robotics. The behaviour of a simple organism which is capable of remarkable biological and computational feats that seem to transcend its simple component parts is examined and modelled. In this book the following question is asked: How can something as simple as Physarum polycephalum - a giant amoeboid single-celled organism which does not possess any neural tissue, fixed skeleton or organised musculature - can approximate complex computational behaviour during its foraging, growth and adaptation of its amorphous body plan, and with such limited...
This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA.
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A ...
Is it possible to guide the process of self-organisation towards specific patterns and outcomes? Wouldn’t this be self-contradictory? After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised control. Then how can we place the guiding elements so that they do not override rich choices potentially discoverable by an uncontrolled process? This book presents different approaches to resolving this paradox. In doing so, the presented studies address a broad range of phenomena, ranging from autopoietic systems to morphological computation, and from small-world networks to information cascades in...
Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules ...
This book introduces characteristic features of the protein structure prediction (PSP) problem. It focuses on systematic selection and improvement of the most appropriate metaheuristic algorithm to solve the problem based on a fitness landscape analysis, rather than on the nature of the problem, which was the focus of methodologies in the past. Protein structure prediction is concerned with the question of how to determine the three-dimensional structure of a protein from its primary sequence. Recently a number of successful metaheuristic algorithms have been developed to determine the native structure, which plays an important role in medicine, drug design, and disease prediction. This interdisciplinary book consolidates the concepts most relevant to protein structure prediction (PSP) through global non-convex optimization. It is intended for graduate students from fields such as computer science, engineering, bioinformatics and as a reference for researchers and practitioners.