You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
New Frontiers in Nanochemistry: Concepts, Theories, and Trends, Volume 2: Topological Nanochemistry is the second of the new three-volume set that explains and explores the important basic and advanced modern concepts in multidisciplinary chemistry. Under the broad expertise of the editor, this second volume explores the rich research areas of nanochemistry with a specific focus on the design and control of nanotechnology by structural and reactive topology. The objective of this particular volume is to emphasize the application of nanochemistry. With 46 entries from eminent international scientists and scholars, the content in this volume spans concepts from A-to-Z—from entries on the atom-bond connectivity index to the Zagreb indices, from connectivity to vapor phase epitaxy, and from fullerenes to topological reactivity—and much more. The definitions within the text are accompanied by brief but comprehensive explicative essays as well as figures, tables, etc., providing a holistic understanding of the concepts presented.
A very wide range of catalytic conversions find industrial use in organic process chemistry. The scale of the ope rations varies enormously from very high volume pro cesses to specialty chemical preparations. Many of these processes are functional group conversions or class reac tions, and the more important of these will receive detailed treatment in specific chapters throughout this series. Nevertheless, the scope is very broad, and it is all too easy for the non-specialist to become lost in a large volume of detail. To try to avoid this, the first chapter in this volume, by Dr. Paul N. Rylander provides a working summary of the more important catalytic con versions of this type. In doing ...
Here, numerous winners of the Wolf prize from all chemical disciplines provide an overview of the new ideas and approaches that will shape this dynamic science over the forthcoming decades and so will have a decisive influence on our living conditions. This glimpse of the future is naturally based on the findings granted us by the rapid increase in chemical research during the 20th century. It may be said that a silent "revolution" took place, the positive results of which are still not fully predicted. For example, chemists in research laboratories nowadays are able to develop drugs in increasingly short times to treat diseases once thought incurable. They can design new materials that withstand extreme conditions, and predict the properties of compounds that no one has even seen yet. In this exceptional book those breakthroughs of modern chemistry are illustrated and explained by leading scientists. It stems from the high-quality papers given at the prestigious ceremony to accompany the presentation of the 20th Wolf Prize. It is an extraordinary source for every chemist in industry and academia to get an overview of the highlights of modern chemistry.
This volume of the Handbook of Surface Science covers all aspects of the dynamics of surface processes. Two dozen world leading experts in this field address the subjects of energy exchange in gas atoms, surface collisions, the rules governing dissociative adsorption on surfaces, the formation of nanostructures on surfaces by self-assembly, and the study of surface phenomena using ultra-fast lasers. The chapters are written for both newcomers to the field as well as researchers.• Covers all aspects of the dynamics of surface processes • Provides understanding of this unique field utilizing a multitude of accurate experiments and advanced microscopic theory that allows quantum-level comparisons • Presents the concepts and tools relevant beyond surface science for catalysis, nanotechnology, biology, medicine, and materials
This book is the second volume in the Handbook of Surface Science series and deals with aspects of the electronic structure of surfaces as investigated by means of the experimental and theoretical methods of physics. The importance of understanding surface phenomena stems from the fact that for many physical and chemical phenomena, the surface plays a key role: in electronic, magnetic, and optical devices, in heterogenous catalysis, in epitaxial growth, and the application of protective coatings, for example. Therefore a better understanding and, ultimately, a predictive description of surface and interface properties is vital for the progress of modern technology. An investigation of surface electronic structure is also central to our understanding of all aspects of surfaces from a fundamental point of view. The chapters presented here review the goals achieved in the field and map out the challenges ahead, both in experiment and theory.
New Frontiers in Nanochemistry: Concepts, Theories, and Trends, 3-Volume Set explains and explores the important fundamental and advanced modern concepts from various areas of nanochemistry and, more broadly, the nanosciences. This innovative and one-of-a kind set consists of three volumes that focus on structural nanochemistry, topological nanochemistry, and sustainable nanochemistry respectively, collectively forming an explicative handbook in nanochemistry. The compilation provides a rich resource that is both thorough and accessible, encompassing the core concepts of multiple areas of nanochemistry. It also explores the content through a trans-disciplinary lens, integrating the basic and advanced modern concepts in nanochemistry with various examples, applications, issues, tools, algorithms, and even historical notes on the important people from physical, quantum, theoretical, mathematical, and even biological chemistry.
Now updated-the current state of development of modern surface science Since the publication of the first edition of this book, molecular surface chemistry and catalysis science have developed rapidly and expanded into fields where atomic scale and molecular information were previously not available. This revised edition of Introduction to Surface Chemistry and Catalysis reflects this increase of information in virtually every chapter. It emphasizes the modern concepts of surface chemistry and catalysis uncovered by breakthroughs in molecular-level studies of surfaces over the past three decades while serving as a reference source for data and concepts related to properties of surfaces and i...
The primary goal of this book is to summarize the current level of accumulated knowledge about the physical structure of solid surfaces with emphasis on well-defined surfaces at the gas-solid and vacuum-solid interfaces. The intention is not only to provide a standard reference for practitioners, but also to provide a good starting point for scientists who are just entering the field. The presentation in most of the chapters therefore assumes that the typical reader will have a good undergraduate background in chemistry, physics, or materials science. At the same time, coverage is comprehensive and at a high technical level with emphasis on fundamental physical principles. This first volume ...
Surface science emerged in the 1960s with the development of reliable ultrahigh vacuum apparatus, providing exact structures of surfaces of metal single crystals, information about their compositions, and relationships between surface structure and composition and catalytic reaction rates. Catalysis, the acceleration of a chemical reaction by a catalyst (substance), provided much of the driving force for the early development of surface science. As surface science continues its rapid development, this book illustrates how it is still driven by the challenges of catalysis and how both theory and scanning tunneling microscopy have forcefully emerged as essential tools. It is also evident how surface science continues to serve as the foundation of catalytic science. This is a compendium written by leading surface scientists presenting an incisive assessment of up-to-date theoretical and experimental results constituting the foundation of fundamental understanding of surface catalysis. This paperback.