You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The science of nanotechnology, the manipulation, design and engineering of devices at the atomic and molecular scale, is starting to be applied to many disciplines including aspects of agriculture and crop science. This book opens with a brief history of nanotechnology in agriculture. Applications are then examined in detail, including nanopesticides, nanosensors, nanofertilizers, and nanoherbicides. Topics covered include; the biosynthesis of nanoparticles (through microbes, plants and other biotic agents); the ecological consequences of their delivery into the environment (examining effects and toxicity on soil, soil biota, and plants); safety issues; an overview of the global market for n...
This book integrates a science and business approach to provide an introduction and an insider view of intellectual property issues within the biotech industry, with case studies and examples from developing economy markets. Broad in scope, this book covers key principles in pharmaceutical, industrial, and agricultural biotechnology within four parts. Part 1 details the principles of intellectual property and biotechnology. Part 2 covers plant biotechnology, including biotic and abiotic stress tolerance, GM foods in sustainable agriculture, microbial biodiversity and bioprospecting for improving crop health and productivity, and production and regulatory requirements of biopesticides and bio...
Nature’s high biomass productivity is based on biological N2 fixation (BNF) and biodiversity (Benckiser, 1997; Benckiser and Schnell, 2007). Although N2 makes up almost 80% of the atmosphere’s volume living organisms need it in only small quantities, presumably due to the paucity of natural ways of transforming this recalcitrant dinitrogen into reactive compounds. N shortage is commonly the most important limiting factor in crop production. The synthesis of ammonium from nitrogen and hydrogen, the Haber–Bosch (H-B) process, invented more than 100 years ago, became the holy grail of synthetic inorganic chemistry and removed the most ubiquitous limit on crop yields. H-B opened the way fo...
Rhizosphere biology is approaching a century of investigations wherein growth-promoting rhizomicroorganisms (PGPR) have attracted special attention for their ability to enhance productivity, profitability and sustainability at a time when food security and rural livelihood are a key priority. Bio-inputs - either directly in the form of microbes or their by-products - are gaining tremendous momentum and harnessing the potential of agriculturally important microorganisms could help in providing low-cost and environmentally safe technologies to farmers. One approach to such biologically-based strategies is the use of naturally occurring products such as PGPR. Written by an international team of experts, this book considers new concepts and global issues in biopesticide research and evaluates the implications for sustainable productivity. It is an invaluable resource for researchers in applied agricultural biotechnology, microbiology and soil science, and also for industry personnel in these areas.
The book focuses in detail on learning and adapting through partnerships between managers, scientists, and other stakeholders who learn together how to create and maintain sustainable resource systems. As natural areas shrink and fragment, our ability to sustain economic growth and safeguard biological diversity and ecological integrity is increasingly being put to the test. In attempting to meet this unprecedented challenge, adaptive management is becoming a viable alternative for broader application. Adaptive management is an iterative decision-making process which is both operationally and conceptually simple and which incorporates users to acknowledge and account for uncertainty, and sus...
The book Eco-Restoration of the Polluted Environment: A Biological Perspective explores recent advances in biological strategies for the remediation of polluted environments, including soil, water, and air. It covers bioremediation of heavy metals, radioactive waste, and waste gases, which are believed to be bottleneck problems for researchers working in this field. The book contains separate chapters on genetic engineering technology for enhancement of the bioremediation potential of bioresources and the role of biosurfactants, enzymes, and exo-polysaccharides for bioremediation of polluted environments, along with basic aspects of eco-restoration by microorganisms. It summarizes the signif...
The ability to form biofilms is a universal attribute of bacteria. Bacteria are able to grow on almost every surface, forming these architecturally complex communities. In biofilms, the cells grow in multicellular aggregates, encased in an extracellular matrix produced by the bacteria themselves. They impact humans in many ways, and can form in natural, medical and industrial settings. For example, the formation of biofilms on medical devices such as catheters or implants often results in difficult-to-treat chronic infections. This book focuses on emerging concepts in bacterial biofilm research, such as the different mechanisms of biofilm formation in Gram negative and Gram positive bacteria, and the burden of biofilm associated infections. It also highlights the various anti-biofilm strategies that can be translated to curb biofilm-associated infections and the escalation of antimicrobial resistance determinants.
Biotechnology and Biology of Trichoderma serves as a comprehensive reference on the chemistry and biochemistry of one of the most important microbial agents, Trichoderma, and its use in an increased number of industrial bioprocesses for the synthesis of many biochemicals such as pharmaceuticals and biofuels. This book provides individuals working in the field of Trichoderma, especially biochemical engineers, biochemists and biotechnologists, important information on how these valuable fungi can contribute to the production of a wide range of products of commercial and ecological interest. - Provides a detailed and comprehensive coverage of the chemistry, biochemistry and biotechnology of Trichoderma, fungi present in soil and plants - Includes most important current and potential applications of Trichoderma in bioengineering, bioprocess technology including bioenergy & biofuels, biopharmaceuticals, secondary metabolites and protein engineering - Includes the most recent research advancements made on Trichoderma applications in plant biotechnology and ecology and environment
Examines advances in biohydrometallurgy, biomineralisation, and bioleaching techniques. Discusses the importance of bacteria in biohydrometallurgical processes and microbial interventions for waste cleanup and upgradation of minerals. Presents the latest techniques for biosynthesis related to different metals along with recent developments in alternative procedures using extremophile and leaching bacteria.
The global population is increasing rapidly, and feeding the ever-increasing population poses a serious challenge for agriculturalists around the world. Seed is a basic and critical input in agriculture to ensure global food security. Roughly 90 percent of the crops grown all over the world are propagated by seed. However, seed can also harbour and spread pathogens, e.g. fungi, bacteria, nematodes, viruses etc., which cause devastating diseases. Seed-borne pathogens represent a major threat to crop establishment and yield. Hence, timely detection and diagnosis is a prerequisite for their effective management. The book "Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Managem...