You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book highlights modern strategies and methods to improve oilseed crops in the era of climate change, presenting the latest advances in plant molecular breeding and genomics-driven breeding. Spectacular achievements in the fields of molecular breeding, transgenics and genomics in the last three decades have facilitated revolutionary changes in oilseed- crop-improvement strategies and techniques. Since the genome sequencing of rice, as the first crop plant, in 2002, the genomes of about one dozen oilseed crops have been sequenced and more are to follow. This has made it possible to decipher the exact nucleotide sequence and chromosomal positions of agroeconomic genes. Most importantly, comparative genomics and genotyping-by-sequencing have opened up new vistas for exploring available biodiversity, particularly of wild crop relatives, for identifying useful donor genes.
Our lives and well being intimately depend on the exploitation of the plant genetic resources available to our breeding programs. Therefore, more extensive exploration and effective exploitation of plant genetic resources are essential prerequisites for the release of improved cultivars. Accordingly, the remarkable progress in genomics approaches and more recently in sequencing and bioinformatics offers unprecedented opportunities for mining germplasm collections, mapping and cloning loci of interest, identifying novel alleles and deploying them for breeding purposes. This book collects 48 highly interdisciplinary articles describing how genomics improves our capacity to characterize and harness natural and artificially induced variation in order to boost crop productivity and provide consumers with high-quality food. This book will be an invaluable reference for all those interested in managing, mining and harnessing the genetic richness of plant genetic resources.
To feed the burgeoning world population, global food production must increase drastically. This is becoming more challenging with the imminent threats of global climate change, especially the incidences of abiotic stresses, such as drought, heat, and salinity are predicted to increase soon. Global climate change may also affect plant-biotic interactions. Additionally, modernization in underdeveloped and developing countries is expected to decrease available land for agricultural usage. Thus, to achieve sustainable agricultural development, it is imperative to produce more food without using additional land and other valuable resources, including water. These necessitates should develop novel...
This Frontiers Research Topic "The Brassicaceae- Agri-Horticultural and Environmental Perspectives" is an effort to provide a common platform to agronomists, horticulturists, plant breeders, plant geneticists/molecular biologists, plant physiologists and environmental plant scientists exploring major insights into the role of important members of the plant family Brassicaceae (the mustard family, or Cruciferae) in agri-horticultural and environmental arenas.
With the predicted increase of the human population and the subsequent need for larger food supplies, root health in crop plants could play a major role in providing sustainable highly productive crops that can cope with global climate changes. While the essentiality of roots and their relation to plant performance is broadly recognized, less is known about their role in plant growth and development. “Root Genomics” examines how various new genomic technologies are rapidly being applied to the study of roots, including high-throughput sequencing and genotyping, TILLING, transcription factor analysis, comparative genomics, gene discovery and transcriptional profiling, post-transcriptional events regulating microRNAs, proteome profiling and the use of molecular markers such as SSRs, DArTs, and SNPs for QTL analyses and the identification of superior genes/alleles. The book also covers topics such as the molecular breeding of crops in problematic soils and the responses of roots to a variety of stresses.
Weed populations in agriculture are a major cause of yield loss. Conventionally, crop rotation and tillage practices limit the number of weed flora. Several chemical herbicides are being applied to control weed growth, but the long-term use of those chemicals does not effectively control weeds, due to the development of resistant germplasms, which cause hazardous effects in living organisms. The global interest in organic farming endorses the alternative way of weed control against chemical herbicides. Recently, biological agents have been added to integrated weed management strategies. Several studies reveal that plant extracts, bacteria, fungi and their products effectively control weed seed germination and growth. The aim of this book is to discuss the current understanding of bioherbicides and strategies to weed control.
Breeding of crop plants to make them more adapted to human agricultural systems has been on-going during domestication the last 10 000 years. However, only recently with the invention of the Mendelian principles of genetics and the subsequent development of quantitative genetics during the twentieth century has such genetic crop improvement become based on a general theory. During the last 50 years plant breeding has entered a molecular era based on molecular tools to analyse DNA, RNA and proteins and associate such molecular results with plant phenotype. These marker trait associations develop fast to enable more efficient breeding. However, they still leave a major part of breeding to be performed through selection of phenotypes using quantitative genetic tools. The ten chapters of this book illustrate this development.