You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With BAI being one of the most common complications associated with implantation of any biomaterial, this vital book features contributions from leaders in the field who address this critical problem in applying biomaterials research to clinical practice.
The Perfect Slime presents the latest state of knowledge and all aspects of the Extracellular Polymeric Substances, (EPS) matrix – from the ecological and health to the antifouling perspectives. The book brings together all the current material in order to expand our understanding of the functions, properties and characteristics of the matrix as well as the possibilities to strengthen or weaken it. The EPS matrix represents the immediate environment in which biofilm organisms live. From their point of view, this matrix has paramount advantages. It allows them to stay together for extended periods and form synergistic microconsortia, it retains extracellular enzymes and turns the matrix int...
Biofilms are of great practical importance for beneficial technologies such as water and wastewater treatment and bioremediation of groundwater and soil. In other settings biofilms cause severe problems, for example in 65% of bacterial infections currently treated by clinicians (particularly those associated with prosthetics and implants), accelerated corrosion in industrial systems, oil souring and biofouling. Until recently, the structure and function of biofilms could only be inferred from gross measures of biomass and metabolic activity. This limitation meant that investigators involved in biofilm research and application had only a crude understanding of the microbial ecology, physical ...
The Kuala Lumpur International Conference on Biomedical Engineering (BioMed 2006) was held in December 2006 at the Palace of the Golden Horses, Kuala Lumpur, Malaysia. The papers presented at BioMed 2006, and published here, cover such topics as Artificial Intelligence, Biological effects of non-ionising electromagnetic fields, Biomaterials, Biomechanics, Biomedical Sensors, Biomedical Signal Analysis, Biotechnology, Clinical Engineering, Human performance engineering, Imaging, Medical Informatics, Medical Instruments and Devices, and many more.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Biofilms affect the lives of all of us, growing as they do for example on our teeth (as plaque), on catheters and medical implants in our bodies, on our boats and ships, in food processing environments, and in drinking and industrial water treatment systems. They are highly complex biological communities whose detailed structure and functioning is only gradually being unravelled, with the development of increasingly sophisticated technology for their study. Biofilms almost always have a negative impact on human affairs (flocs in sewage treatment plants are a major exception) and a lot of research is being carried out to gain a better understanding of them, so that we will be in a better position to control them. This volume, with contributions by international experts from widely diverse areas of this field, presents a state-of-the-art picture of where we are at present in terms of our knowledge of biofilms, the techniques being used to study them, and possible strategies for controlling their growth more successfully. It should provide a valuable reference source for information on biofilms and their control for many years to come.
The ability to form biofilms is a universal attribute of bacteria. Bacteria are able to grow on almost every surface, forming these architecturally complex communities. In biofilms, the cells grow in multicellular aggregates, encased in an extracellular matrix produced by the bacteria themselves. They impact humans in many ways, and can form in natural, medical and industrial settings. For example, the formation of biofilms on medical devices such as catheters or implants often results in difficult-to-treat chronic infections. This book focuses on emerging concepts in bacterial biofilm research, such as the different mechanisms of biofilm formation in Gram negative and Gram positive bacteria, and the burden of biofilm associated infections. It also highlights the various anti-biofilm strategies that can be translated to curb biofilm-associated infections and the escalation of antimicrobial resistance determinants.