You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It is not always the case that the subject of a scientific book and its relevance to everyday li fe are so timely. Photobiology and its si ster subject Radiobiology are now a must for understanding the environment we live in and the impact light, ultraviolet light, and radiation have on all aspects of our life. Photobiology is a true interdisciplinary field. Photobiology research plays a direct role in diverse fields, and a glance at the topics of the symposia covered in this book by over 100 articles shows the breadth and depth of knowledge acquired in fundamental research and its impact on the major issues and applied problems the world is facing. Half a century of photobiology research brought about an understanding of the importance of light to life, both as a necessary source of energy and growth as weIl as its possible dangers. Research in photochemistry and photobiology led to the discoveries of ceIlular repair mechanisms of UV induced damages to DNA and this led to understanding of the effects of hazardous environmental chemieals and mutagenecity , and to the development of genetic engineering. This topic was given due emphasis in several symposia and chapters in this book.
This book, now in a thoroughly revised second edition, offers a comprehensive review of the rapidly growing field of optogenetics, in which light-sensing proteins are genetically engineered into cells in order to acquire information on cellular physiology in optical form or to enable control of specific network in the brain upon activation by light. Light-sensing proteins of various living organisms are now available to be exogenously expressed in neurons and other target cells both in vivo and in vitro. Cellular functions can thus be manipulated or probed by light. The new edition documents fully the extensive progress since publication of the first edition to provide an up-to-date overview...
This book presents the most advanced review available of all aspects of π-electron systems, including novel structures, new synthetic protocols, chemical and physical properties, spectroscopic and computational insights, molecular engineering, device properties and physiological properties. π-Electron systems are ubiquitous in nature. Plants convert light energy into chemical energy by photosynthetic processes, in which chlorophylls and other porphyrinoids play an important role. On the one hand, research to learn about photosynthesis from nature has led to understanding of electron and energy transfer processes and to achieving artificial energy conversion systems inspired by nature. On t...
This is the most updated, comprehensive collection of monographs on all aspects of photochemistry and photophysics related to natural and synthetic, inorganic, organic, and biological supramolecular systems. Supramolecular Photochemistry: Controlling Photochemical Processes addresses reactions in crystals, organized assemblies, monolayers, zeolites, clays, silica, micelles, polymers, dendrimers, organic hosts, supramolecular structures, organic glass, proteins and DNA, and applications of photosystems in confined media. This landmark publication describes the past, present, and future of this growing interdisciplinary area.
Brings together key new results of interdisciplinary collaborations among various research fields on rhodopsin including the photoreceptive mechanism of rhodopsins, the molecular mechanism of the visual transduction process, visual processes in the retina and other transduction processes in the retina and brain. The structures of the rhodopsin molecule are studied in the fields of protein chemistry, molecular biology, organic chemistry and structural biology; the ultra fast reactions of the retinal protein are studied in physics, biophysics, physical chemistry, organic chemistry and photobiology; the phototransduction in retinal proteins and visual cells are studied in biophysics, biochemistry, biophysical chemistry and photobiology; and the localization in the tissues is studied in anatomy and histochemistry. The diversity of visual systems in various animals is studied in zoology and comparative biochemistry.
Collating the knowledge from over 20,000 publications in chemistry, biology and nanotechnology, this handbook is the first to comprehensively present the state of the art in one ready reference. A team of international authors connects the various disciplines involved, covering cis-trans isomerization of double bonds and pseudo-double bonds, as well as other cis-trans isomerizations. For biochemists, organic chemists, physicochemists, photochemists, polymer and medicinal chemists.
The rise of optogenetics as a standard technique to non-invasively probe and monitor biological function created an immense interest in the molecular function of photosensory proteins. These photoreceptors are usually protein/pigment complexes that translate light into biological information and have become essential tools in cell biology and neurobiology as their function is genetically encoded and can be conveniently delivered into a given cell. Like for fluorescent proteins that quickly became invaluable as genetically encodable reporters in microscopy and imaging, variants of photosensory proteins with customized sensitivity and functionality are nowadays in high demand. In this ebook we...
This volume provides readers with the latest information on the advances made in the field of rhodopsins. The chapters in this book cover topics such as new discoveries and developments; new ways to search for rhodopsins; methods to characterize the function and structure of rhodopsins on a molecular level; nano volume high throughput in meso crystallization, and fourth generation x-ray synchrotron sources. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Rhodopsin: Methods and Protocols is a valuable resource for any scientist and researcher interested in learning more about this developing field.
Significant progress has been made in the research into the molecular basis of vision, especially retinal proteins, which are the components of visual reception. The results of these studies open wide prospects for their application in medicine and in the construction of unique light-sensitive materials for holography and microelectronics. Therefore, research into retinal proteins is not only important for understanding the mechanisms of the native light-transducing systems but also for the development of new technologies. An international group of scientists discussed the key aspects of the study of light-sensitive systems at the Conference on Retinal Proteins held in July 1986. This Proceedings volume contains 45 papers that were presented on this important topic in molecular biology.
This detailed volume presents cutting-edge research protocols to study the structure and dynamics of bacterial and archaeal motility systems using bacterial genetics, molecular biology, biochemistry, biophysics, structural biology, cell biology, microscopy imaging, and molecular dynamics simulation. Beginning with a section on bacterial flagellar protein export and assembly, the book continues with chapters covering flagella-driven motility of bacteria, archaella-driven motility of archaea, type IV-driven twitching motility of bacteria, as well as adhesion-based gliding motility of bacteria and other unique motility systems. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Bacterial and Archaeal Motility is the ideal reference for researchers working in this vital area of microbiology.