You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Metal-to-Nonmetal Transitions presents the current research in the field from both physical and chemical perspectives. Discussions of the macroscopic, microscopic and quantum aspects of these transitions make this a useful reference for researchers and students.
This book constitutes the refereed proceedings of the 33rd International Conference, ISC High Performance 2018, held in Frankfurt, Germany, in June 2018. The 20 revised full papers presented in this book were carefully reviewed and selected from 81 submissions. The papers cover the following topics: Resource Management and Energy Efficiency; Performance Analysis and Tools; Exascale Networks; Parallel Algorithms.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
For years, concepts and models relevant to the fields of molecular electronics and organic electronics have been invented in parallel, slowing down progress in the field. This book illustrates how synthetic chemists, materials scientists, physicists, and device engineers can work together to reach their desired, shared goals, and provides the knowledge and intellectual basis for this venture. Supramolecular Materials for Opto-Electronics covers the basic principles of building supramolecular organic systems that fulfil the requirements of the targeted opto-electronic function; specific material properties based on the fundamental synthesis and assembly processes; and provides an overview of the current uses of supramolecular materials in opto-electronic devices. To conclude, a "what's next" section provides an outlook on the future of the field, outlining the ways overarching work between research disciplines can be utilised. Postgraduate researchers and academics will appreciate the fundamental insight into concepts and practices of supramolecular systems for opto-electronic device integration.
The Leibniz Supercomputing Centre (LRZ) and the Bavarian Competence Network for Technical and Scienti?c High Performance Computing (KONWIHR) publish in the present book results of numerical simulations facilitated by the High P- formance Computer System in Bavaria (HLRB II) within the last two years. The papers were presented at the Fourth Joint HLRB and KONWIHR Review and - sult Workshop in Garching on 8th and 9th December 2009, and were selected from all progress reports of projects that use the HLRB II. Similar to the workshop two years ago, the majority of the contributed papers belong to the area of computational ?uid dynamics (CFD), condensed matter physics, astrophysics, chemistry, co...
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
This book constitutes the refereed proceedings of the 35th International Conference on High Performance Computing, ISC High Performance 2020, held in Frankfurt/Main, Germany, in June 2020.* The 27 revised full papers presented were carefully reviewed and selected from 87 submissions. The papers cover a broad range of topics such as architectures, networks & infrastructure; artificial intelligence and machine learning; data, storage & visualization; emerging technologies; HPC algorithms; HPC applications; performance modeling & measurement; programming models & systems software. *The conference was held virtually due to the COVID-19 pandemic. Chapters "Scalable Hierarchical Aggregation and Re...
The 5th edition of the VECPAR series of conferences marked a change of the conference title. The full conference title now reads VECPAR 2002 — 5th Int- national Conference on High Performance Computing for Computational S- ence. This re?ects more accurately what has been the main emphasis of the conference since its early days in 1993 – the use of computers for solving pr- lems in science and engineering. The present postconference book includes the best papers and invited talks presented during the three days of the conference, held at the Faculty of Engineering of the University of Porto (Portugal), June 26–28 2002. The book is organized into 8 chapters, which as a whole appeal to a wide research community, from those involved in the engineering applications to those interested in the actual details of the hardware or software implementation, in line with what, in these days, tends to be considered as Computational Science and Engineering (CSE). The book comprises a total of 49 papers, with a prominent position reserved for the four invited talks and the two ?rst prizes of the best student paper competition.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.