You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep...
The theory of random matrices is an amazingly rich topic in mathematics. Random matrices play a fundamental role in various areas such as statistics, mathematical physics, combinatorics, theoretical computer science, number theory and numerical analysis. This volume is based on lectures delivered at the 2013 AMS Short Course on Random Matrices, held January 6-7, 2013 in San Diego, California. Included are surveys by leading researchers in the field, written in introductory style, aiming to provide the reader a quick and intuitive overview of this fascinating and rapidly developing topic. These surveys contain many major recent developments, such as progress on universality conjectures, connections between random matrices and free probability, numerical algebra, combinatorics and high-dimensional geometry, together with several novel methods and a variety of open questions.
Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models. These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
Based on lectures held in honour of Louis Nirenberg's 75th birthday, this volume contains both research papers dealing with various problems in partial differential equations such as wave maps, the Navier-Stokes equations and Lagrangian submanifolds.
This book presents the lecture notes and articles from the workshop on hydrodynamic limits held at The Fields Institute (Toronto). The first part of the book contains the notes from the mini-course given by Professor S. R. S. Varadhan. The second part contains research articles reviewing the diverse progress in the study of hydrodynamic limits and related areas. This book offers a comprehensive introduction to the theory and its techniques, including entropy and relative entropy methods, large deviation estimates, and techniques in nongradient systems. This book, especially the lectures of Part I, could be used as a text for an advanced graduate course in hydrodynamic limits and interacting particle systems.
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
The aim of this journal (www.ma.utexas.edu/mpej/) is to publish papers in mathematical physics and related areas that are of the highest quality. Research papers and review articles are selected through the normal refereeing process, overseen by an editorial board. The research subjects are primarily on mathematical physics; but this should not be interpreted as a limitation, as the editors feel that essentially all subjects of mathematics and physics are in principle relevant to mathematical physics.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
This book deals with one of the fundamental problems of nonequilibrium statistical mechanics: the explanation of large-scale dynamics (evolution differential equations) from models of a very large number of interacting particles. This book addresses both researchers and students. Much of the material presented has never been published in book-form before.