You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This compendium of accounts reveals the unique perspectives of many scientists who made major contributions to the Nobel Prize-winning discovery of C60 buckminsterfullerene but who have not previously published personal accounts. The introduction attempts to provide a rational framework for understanding how this discovery came about and how firmly
Until recently, the element carbon was believed to exhibit only two main allotropic forms, diamond and graphite. Research in the US and Europe has now confirmed the existence of a third previously unknown form - buckminsterfullerene (C60) and its relatives, the fullerenes (C24, C28, C32, C70 etc). The story of fullerene chemistry, physics and materials science began in 1985, almost twenty years after the existence of a spherical carbon cluster was first considered. In September 1985 a joint Sussex/Rice Universities team including Kroto, Heath, O'Brien, Curl and Smalley used a powerful mass spectrometric technique to identify the C+60 species, and proposed a spherical structure and the name buckminsterfullerene. It was not, however, until Krätschmer and Huffman reported the isolation of crystals of C60 in 1990 that the closed cage structure of C60 could be confirmed. The Fullerenes documents the work leading up to 1990 and more recent developments in the field of fullerene research and will serve as an indispensible reference tool for all workers in this area.
Fullerenes-a guide to the current state of knowledge in the field The last decade has seen an explosion of research into the chemical and physical properties of a promising new class of carbon-based materials known as fullerenes. Karl Kadish and Rodney Ruoff, two highly recognized leaders in the fullerene and nanotube research community, edit a comprehensive and much-needed survey of this important and rapidly evolving field. Contributions by experts in diverse areas of chemistry, physics, pharmacology, materials science, and chemical engineering provide an excellent introduction to fullerenes and highlight their considerable potential in such cutting-edge applications as semiconductor mater...
The creation of the hollow carbon buckminsterfullerene molecule as well as methods to produce and purify bulk quantities of it has triggered an explosive growth of research in the field. Superconducting and magnetic fullerides, atoms trapped inside the fullerene cage, chemically bonded fullerene complexes, and nanometer-scale helical carbon tubes are some of the leading areas that have generated much excitement.This book is intended as a guide to the literature for the scientist who is just entering fullerene research, and will be one more valuable volume to the collection for the established worker. It contains reprints of some sixty most important research papers, with focus especially on those papers that have guided further work in the field. There is also a short review of the field, with references to many other publications.
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapt...
The near Infra-Red emission of the Interstellar Medium is a very puzzling subject. In the brightest regions, where spectroscopic observa tions are possible from the ground, several bands (3.3 - 3.4 - 6.2 - 7.7 - 8.6 - 11.3 ~m) have been observed since 1973. The absence of satisfying explanation was so obvious that they were called "Unidenti fied IR Emission Bands". The puzzle still increased when were known the first results of the general IR sky survey made by the satellite IRAS. On a large scale, the near IR emission of the Interstellar medium was expected to be very small but it was observed to be about one third of the total IR emission for our own galaxy ..• The situation has moved in...
The closed-cage carbon molecules known as fullerenes provide an entirely new branch of chemistry, materials science, and physics. Fullerene research is now engaging the frenetic attention of thousands of scientists. Initially, the chemistry was relatively slow to develop due to the low availability of material, and the need for state-of-the-art instrumentation for product analysis. This research area is now very definitely up-and-running, and will soon become the main focus of attention in the fullerene field. The number of published papers already runs into hundreds, and the main features of fullerene reactivity have been established. This book describes all of the known types of reactions as well as the means of production, the purification, and the properties of fullerenes.
"Volume 36 examines timely subjects such as multilinear regression, canonical correlation, and facor and principal component methods of analysis in the evaluation of retention data matrices, molecular recognition mechanisms in the liquid chromatographic separation of fullerenes, the latest techniques in the use of capillary electrophoresis and mass spectrometry for sequencing antisense oligonucleotides, and more."
The fullerenes, hailed as one of the discoveries of the century, have created whole new fields of organic/organometallic chemistry and of physics. Together with the related nanotubes, they hold the promise of providing new materials with novel chemical and solid state properties. The cost of the basic fullerenes is now such that research into them is feasible for very many chemists.This book describes the fundamental aspects of fullerene chemistry. Following brief background on the discovery, basic fullerene nomenclature, and relevant properties (including those of endohedral fullerenes and nanotubes), there are chapters describing the rules governing the addition patterns, and each of the reaction types with representative examples. Leading references are given to key papers describing individual reactions and phenomena.