You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This collection, dedicated to the 70th anniversary of the birth of VasiliiSergeevich Vladimirov, consists of original papers on various branches of analysis and mathematical physics. It presents work relating to the following topics:--the theory of generalized functions--complex and $p$-adic analysis--mathematical questions of quantum field theory and statistical mechanics--computational mathematics and differential equations.
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation a...
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. The Scandal of Father G. K. Chesterton. 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate ar...
The Riemann-Hilbert problem (Hilbert's 21st problem) belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concerns the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this turned out to be a rare case of a wrong forecast made by him. In 1989 the second author (A. B.) discovered a counterexample, thus obtaining a negative solution to Hilbert's 21st problem in its original form.
Features 17 papers that resulted from a 1983 conference held to honor Professor Mahlon Marsh Day upon his retirement from the University of Illinois. This work is suitable for researchers and graduate students in functional analysis.
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigatio...
This book is based on a lecture course given by the author at the Educational Center of the Steklov Mathematical Institute in 2011. It is designed for a one-semester course for undergraduate students familiar with basic differential geometry and complex and functional analysis. The universal Teichmuller space $\mathcal{T}$ is the quotient of the space of quasisymmetric homeomorphisms of the unit circle modulo Mobius transformations. The first part of the book is devoted to the study of geometric and analytic properties of $\mathcal{T}$. It is an infinite-dimensional Kahler manifold which contains all classical Teichmuller spaces of compact Riemann surfaces as complex submanifolds, which expl...