You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Electrical Circuit Theory and Technology is a fully comprehensive text for courses in electrical and electronic principles, circuit theory and electrical technology. The coverage takes students from the fundamentals of the subject, to the completion of a first year degree level course. Thus, this book is ideal for students studying engineering for the first time, and is also suitable for pre-degree vocational courses, especially where progression to higher levels of study is likely. John Bird's approach, based on 700 worked examples supported by over 1000 problems (including answers), is ideal for students of a wide range of abilities, and can be worked through at the student's own pace. The...
Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.
"Mechanical Engineering Principles offers a student-friendly introduction to core engineering topics that does not assume any previous background in engineering studies, and as such can act as a core textbook for several engineering courses. Bird and Ross introduce mechanical principles and technology through examples and applications rather than theory. This approach enables students to develop a sound understanding of the engineering principles and their use in practice. Theoretical concepts are supported by over 600 problems and 400 worked answers. The new edition will match up to the latest BTEC National specifications and can also be used on mechanical engineering courses from Levels 2 to 4"--
Unlike most engineering maths texts, this book does not assume a firm grasp of GCSE maths, and unlike low-level general maths texts, the content is tailored specifically for the needs of engineers. The result is a unique book written for engineering students, which takes a starting point below GCSE level. Basic Engineering Mathematics is therefore ideal for students of a wide range of abilities, and especially for those who find the theoretical side of mathematics difficult. All students taking vocational engineering courses who require fundamental knowledge of mathematics for engineering and do not have prior knowledge beyond basic school mathematics, will find this book essential reading. ...
This practical resource introduces electrical and electronic principles and technology covering theory through detailed examples, enabling students to develop a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. No previous background in engineering is assumed, making this an ideal text for vocational courses at Levels 2 and 3, foundation degrees and introductory courses for undergraduates.
"This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts." --Publisher.
Studying engineering, whether it is mechanical, electrical or civil relies heavily on an understanding of mathematics. This new textbook clearly demonstrates the relevance of mathematical principles and shows how to apply them to solve real-life engineering problems. It deliberately starts at an elementary level so that students who are starting from a low knowledge base will be able to quickly get up to the level required. Students who have not studied mathematics for some time will find this an excellent refresher. Each chapter starts with the basics before gently increasing in complexity. A full outline of essential definitions, formulae, laws and procedures are introduced before real world situations, practicals and problem solving demonstrate how the theory is applied. Focusing on learning through practice, it contains examples, supported by 1,600 worked problems and 3,000 further problems contained within exercises throughout the text. In addition, 34 revision tests are included at regular intervals. An interactive companion website is also provided containing 2,750 further problems with worked solutions and instructor materials
Science for Engineering offers an introductory textbook for students of engineering science and assumes no prior background in engineering. John Bird focuses upon examples rather than theory, enabling students to develop a sound understanding of engineering systems in terms of the basic laws and principles. This book includes over 580 worked examples, 1300 further problems, 425 multiple choice questions (with answers), and contains sections covering the mathematics that students will require within their engineering studies, mechanical applications, electrical applications and engineering systems. This new edition of Science for Engineering covers the fundamental scientific knowledge that al...
Now in its eighth edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for a range of Level 2 and 3 engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae and multiple choice tests.