You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The interest in the problem of surface diffusion has been steadily growing over the last fifteen years. This is clearly evident from the increase in the number of papers dealing with the problem, the development of new experimental techniques, and the specialized sessions focusing on diffusion in national and international meetings. Part of the driving force behind this increasing activity is our recently acquired ability to observe and possibly control atomic scale phenomena. It is now possible to look selectively at individual atomistic processes and to determine their relative importance during growth and reactions at surfaces. The number of researchers interested in this problem also has...
This text discusses the physical principles of how and why crystals grow. It introduces the fundamental properties of crystal surfaces at equilibrium, and describes simple models and basic concepts of crystal growth including diffusion, thermal smoothing of a surface, and applications to semiconductors. It also covers more complex topics such as kinetic roughness, growth instabilities, and elastic effects, as well as the crucial contributions of crystal growth in electronics during this century. The book focuses on growth using molecular beam epitaxy. Throughout, the emphasis is on the role played by modern statistical physics. Informative appendices, interesting exercises and an extensive bibliography reinforce the text.
Contents: Percolation and Localization (D J Thouless)Disordered Systems — Experimental Viewpoint (J Joffrin)Lectures on Amorphous Systems (P W Anderson)Elementary Algebraic Topology Related to the Theory of Defects and Textures (V Poenaru)Models of Disordered Materials (S Kirkpatrick)Thermal and Geometrical Critical Phenomena in Random Systems (T C Lukensky)A Short Guide to Polymer Physics (P-G de Gennes)and 9 seminars Readership: Graduate students and researchers in condensed matter physics.
This book provides ideas on what neutron scattering could look like in the next millennium. In particular, nonconventional, unusual or innovative neutron scattering experiments (from both the scientific and the instrumental point of view) are described which either have novel applications or provide a new insight into science and technology. Chapters on theoretical aspects are adequately included. The scientific and technical areas cover the following topics: novel neutron scattering techniques and perspectives in neutron scattering instrumentation (including sample environment); soft condensed matter, particularly colloids and polymers; materials science and industrial applications; structure and dynamics of multilayers and nanocrystalline materials; dynamical aspects and quantum effects in molecular magnets; strongly correlated electron systems, with emphasis on dynamic correlations in low-dimensional magnets. All these topics are thoroughly introduced and discussed by acknowledged experts.
This NATO Advanced Study Institute held at Gei10, Norway, April 16th-27th 1979, was the fifth in a series devoted to the subject of phase transitions and instabilities. The application to NATO for the funding of this ASI contained the following para graphs: "Traditionally one has made a clear distinction between solids and liquids in terms of positional order, one being long-ranged and the other at most short-ranged. In recent years experiments have revealed a much more faceted picture and a less sharp distinction between solids and liquids. As an example one now has 3-dimensiona1 (3-D) liquids with 1-D density waves and 3-D solids with 1-D-1iquid molecular chains. The subsystems have the common feature of 10w dimensional systems: a strong tendency for fluctuations to appear. Although the connection between fluctuations and dimensionality, and the suppression of long-range order by fluctuations, was pointed out as early as 1935 by Peier1s and by Landau, it is in the last five years or so that theoretical work has gained momentum. This development of understanding started ten years ago, however, much inspired by the experimental work on 2-D spin systems.
Statistical Thermodynamics and Properties of Matter is written with the advanced undergraduate and graduate student in mind. Its aim is to familiarize the student with the approach that a physicist would take, for example, when tackling problems related to quantum mechanics or thermodynamics.