You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
The first DIMACS special year, held during 1989-1990, was devoted to discrete and computational geometry. More than 200 scientists, both long- and short-term visitors, came to DIMACS to participate in the special year activities. Among the highlights were six workshops at Rutgers and Princeton Universities that defined the focus for much of the special year. The workshops addressed the following topics: geometric complexity, probabilistic methods in discrete and computational geometry, polytopes and convex sets, arrangements, and algebraic and practical issues in geometric computation. This volume presents some of the results growing out of the workshops and the special year activities. Containing both survey articles and research papers, this collection presents an excellent overview of significant recent progress in discrete and computational geometry. The diversity of these papers demonstrate how geometry continues to provide a vital source of ideas in theoretical computer science and discrete mathematics as well as fertile ground for interaction and simulation between the two disciplines.
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: • Differential Topology • Mathematical Economics • Dynamical Systems • Theory of Computation • Nonlinear Functional Analysis • Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale ...
George Collins’ discovery of Cylindrical Algebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades. This volume is a state-of-the-art collection of important papers on CAD and QE and on the related area of algorithmic aspects of real geometry. It contains papers from a symposium held in Linz in 1993, reprints of seminal papers from the area including Tarski’s landmark paper as well as a survey outlining the developments in CAD based QE that have taken place in the last twenty years.
Praise for Robust Portfolio Optimization and Management "In the half century since Harry Markowitz introduced his elegant theory for selecting portfolios, investors and scholars have extended and refined its application to a wide range of real-world problems, culminating in the contents of this masterful book. Fabozzi, Kolm, Pachamanova, and Focardi deserve high praise for producing a technically rigorous yet remarkably accessible guide to the latest advances in portfolio construction." --Mark Kritzman, President and CEO, Windham Capital Management, LLC "The topic of robust optimization (RO) has become 'hot' over the past several years, especially in real-world financial applications. This i...
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for line...
Mathematics of Computing -- General.
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid a...
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.