You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents biographical details of 391 eponyms and names in the field, along with the context and relevance of their contributions.
In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal
This book is a collection of lecture notes which were presented by invited speakers at the Eleventh School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter SSPCM 2014' in Rzeszów (Poland) in September 2014. The main challenge for the lecturers was the objective to present their subject as a review as well as in the form of introduction for beginners. Topics considered in the volume concentrate on: spin dynamics and spin transport in magnetic and non-magnetic structures, spin-orbit interaction in two-dimensional systems and graphene, and new mathematical method used in the condensed matter physics.
First multi-year cumulation covers six years: 1965-70.
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.
This is the continuation of the long running ¿Silicon-on-Insulator Technology and Devices¿ symposium. The issue of ECS Transactions covers recent significant advances in SOI technologies, SOI-based nanoelectronics and innovative applications including scientific interests. It will be of interest to materials and device scientists, as well as to process and applications oriented engineers and scientists.
In this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed: Does CMOS technology have a real problem? Do transistors have to be smaller or just better and made of better materials? What is to come after semiconductors? Superconductors or molecular conductors? Is bottom-up self-assembling the answer to the limitation of top-down lithography? Is it time for Optics to become a force in computer evolution? Quantum Computing, Spintronics? Where is the printable plastic electronics proposed 10 years ago? Are carbon nanotube transistors the CMOS of the future?