You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book aims to describe, for readers uneducated in science, the development of humanity's desire to know and understand the world around us through the various stages of its development to the present, when science is almost universally recognized - at least in the Western world - as the most reliable way of knowing. The book describes the history of the large-scale exploration of the surface of the earth by sea, beginning with the Vikings and the Chinese, and of the unknown interiors of the American and African continents by foot and horseback. After the invention of the telescope, visual exploration of the surfaces of the Moon and Mars were made possible, and finally a visit to the Moon. The book then turns to our legacy from the ancient Greeks of wanting to understand rather than just know, and why the scientific way of understanding is valued. For concreteness, it relates the lives and accomplishments of six great scientists, four from the nineteenth century and two from the twentieth. Finally, the book explains how chemistry came to be seen as the most basic of the sciences, and then how physics became the most fundamental.
This volume presents the lecture notes from the authors’ three summer courses offered during the program “Automorphisms of Free Groups: Geometry, Topology, and Dynamics,” held at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Spain. The first two chapters present the basic tools needed, from formal language theory (regular and context-free languages, automata, rewriting systems, transducers, etc) and emphasize their connections to group theory, mostly relating to free and virtually-free groups. The material covered is sufficient to present full proofs of many of the existing interesting characterizations of virtually-free groups. In turn, the last chapter comprehensively describes Bonahon’s construction of Thurston’s compactification of Teichmüller space in terms of geodesic currents on surfaces. It also includes several intriguing extensions of the notion of geodesic current to various other, more general settings.
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II conce...
View the abstract.
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
An accessible yet systematic account of reversibility that demonstrates its impact throughout many diverse areas of mathematics.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
This volume contains the proceedings of the 2017 Georgia International Topology Conference, held from May 22–June 2, 2017, at the University of Georgia, Athens, Georgia. The papers contained in this volume cover topics ranging from symplectic topology to classical knot theory to topology of 3- and 4-dimensional manifolds to geometric group theory. Several papers focus on open problems, while other papers present new and insightful proofs of classical results. Taken as a whole, this volume captures the spirit of the conference, both in terms of public lectures and informal conversations, and presents a sampling of some of the great new ideas generated in topology over the preceding eight years.