You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main aim of this book is to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. These topics seem to be quite fashionable at the moment, but most of the robotics books that touch on these topics tend to treat Lie groups as little more than a fancy notation. I hope to show the power and elegance of these methods as they apply to problems in robotics. A subsidiary aim of the book is to reintroduce some old ideas by describing them in modem notation, particularly Study's Quadric-a description of the group of rigid motions in three dimensions as an algebraic variety (well, actually an open subset in an algebraic variety)-as well as some of the less well k...
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hesten...
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For th...
From reviews of the First Edition: "Being a concise introduction to the principles of neruopathology is a goal this book accomplishes admirably." Annals of Neurology; "unquestionably valuable as a reference text" Arch Path Lab Med; "a fine treatise which truly reflects the current knowledge of the discipline with a strong emphasis on morphologic aspects" Brain Pathology; "an excellent current reference work on neuropathology for practitioners in the various clinical and basic neurosciences" Journal of Neuropathology and Experimental Neurology.
This book is a collection of talks presented at the 1998 IEEE International Conference on Robotics and Automation. Broadly, the meeting discussed the application of modern geometrical methods to problems in robotics. There are now a few textbooks in this area and more papers in the literature. The aim of this book is to introduce these ideas, their simplicity and power, to a wider audience.The first three chapters give an introduction to the Lie group and Lie algebras. The focus is on the group of rigid body transformations in space, namely the Lie group which is fundamental to robotics. The following chapters provide an overview of some of the most up-to-date work in the field of geometrical methods in robotics and have been written by some of the leading researchers in the field. The applications addressed cover the design of robot kinematics, the analysis of singularities in robots and mechanisms, and a geometric view of some computational issues.
This volume presents the proceedings of the 2nd International Workshop on - gebraic Frames for the Perception and Action Cycle. AFPAC 2000. held in Kiel, Germany, 10–11 September 2000. The presented topics cover new results in the conceptualization, design, and implementation of visual sensor-based robotics and autonomous systems. Special emphasis is placed on the role of algebraic modelling in the relevant disciplines, such as robotics, computer vision, theory of multidimensional signals, and neural computation. The aims of the workshop are twofold: ?rst, discussion of the impact of algebraic embedding of the task at hand on the emergence of new qualities of modelling and second, facing t...
In the 60's, control, signals and systems had a common linear algebraic background and, according to their evolution, their respective backgrounds have now dramatically differed. Recovering such a common background, especially in the nonlinear context, is currently a fully open question. The role played by physical models, finite or infinite dimensional, in this hypothetical convergence is extensively discussed in this book. The discussion does not only take place on a theoretical basis but also in the light of two wide classes of applications, among the most active in the current industrially oriented researches: - Electrical and Mechatronical systems; - Chemical Processes and systems appea...
The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.
This is the proceedings of ARK 2018, the 16th International Symposium on Advances in Robot Kinematics, that was organized by the Group of Robotics, Automation and Biomechanics (GRAB) from the University of Bologna, Italy. ARK are international symposia of the highest level organized every two years since 1988. ARK provides a forum for researchers working in robot kinematics and stimulates new directions of research by forging links between robot kinematics and other areas.The main topics of the symposium of 2018 were: kinematic analysis of robots, robot modeling and simulation, kinematic design of robots, kinematics in robot control, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, over-constrained linkages, kinematics in biological systems, humanoid robots and humanoid subsystems.