You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is dedicated to the life and work of the mathematician Joachim Lambek (1922–2014). The editors gather together noted experts to discuss the state of the art of various of Lambek’s works in logic, category theory, and linguistics and to celebrate his contributions to those areas over the course of his multifaceted career. After early work in combinatorics and elementary number theory, Lambek became a distinguished algebraist (notably in ring theory). In the 1960s, he began to work in category theory, categorical algebra, logic, proof theory, and foundations of computability. In a parallel development, beginning in the late 1950s and for the rest of his career, Lambek also worked...
Proceedings of a conference held at Centre de recherches mathematiques of the Universite de Montreal, June 18-20, 2009.
This book introduces an important group of logics that have come to be known under the umbrella term 'susbstructural'. Substructural logics have independently led to significant developments in philosophy, computing and linguistics. An Introduction to Substrucural Logics is the first book to systematically survey the new results and the significant impact that this class of logics has had on a wide range of fields.The following topics are covered: * Proof Theory * Propositional Structures * Frames * Decidability * Coda Both students and professors of philosophy, computing, linguistics, and mathematics will find this to be an important addition to their reading.
Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
"Foundations of the Formal Sciences" (FotFS) is a series of interdisciplinary conferences in mathematics, philosophy, computer science and linguistics. The main goal is to reestablish the traditionally strong links between these areas of research that have been lost in the past decades. The second conference in the series had the subtitle "Applications of Mathematical Logic in Philosophy and Linguistics" and brought speakers from all parts of the Formal Sciences together to give a holistic view of how mathematical methods can improve our philosophical and technical understanding of language and scientific discourse, ranging from the theoretical level up to applications in language recognition software. Audience: This volume is of interest to all formal philosophers and theoretical linguists. In addition to that, logicians interested in the applications of their field and logic students in mathematics, computer science, philosophy and linguistics can use the volume to broaden their knowledge of applications of logic.
The Handbook of the History of Logic is a multi-volume research instrument that brings to the development of logic the best in modern techniques of historical and interpretative scholarship. It is the first work in English in which the history of logic is presented so extensively. The volumes are numerous and large. Authors have been given considerable latitude to produce chapters of a length, and a level of detail, that would lay fair claim on the ambitions of the project to be a definitive research work. Authors have been carefully selected with this aim in mind. They and the Editors join in the conviction that a knowledge of the history of logic is nothing but beneficial to the subject's present-day research programmes. One of the attractions of the Handbook's several volumes is the emphasis they give to the enduring relevance of developments in logic throughout the ages, including some of the earliest manifestations of the subject. - Covers in depth the notion of logical consequence - Discusses the central concept in logic of modality - Includes the use of diagrams in logical reasoning
Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability...