You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents 20 papers on different aspects of modern analysis including analytic and computational number theory, symbolic and numerical computation, theoretical and computational optimization, and recent development in non-smooth and functional analysis with applications to control theory. Applications in algorithmic number theory and tomography are also discussed. Many of the papers originated at a September 1999 workshop held at the University of Limoges. Among the topics are vector-valued perturbed minimization principles; rotundity related to Lipschitz separation; continued fractions, comparison algorithms, and fine structure constants; and codirectional compactness, metric regularity, and subdifferential calculus. No index. Annotation copyrighted by Book News, Inc., Portland, OR
The product of a collaboration of over 15 years, this volume is unique because it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics, treating convex functions in both Euclidean and Banach spaces.
The research of Jonathan Borwein has had a profound impact on optimization, functional analysis, operations research, mathematical programming, number theory, and experimental mathematics. Having authored more than a dozen books and more than 300 publications, Jonathan Borwein is one of the most productive Canadian mathematicians ever. His research spans pure, applied, and computational mathematics as well as high performance computing, and continues to have an enormous impact: MathSciNet lists more than 2500 citations by more than 1250 authors, and Borwein is one of the 250 most cited mathematicians of the period 1980-1999. He has served the Canadian Mathematics Community through his presid...
This text provides the beginning graduate student with an account of p-summing and related operators.
This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.
Concave analysis deals mainly with concave and quasi-concave functions, although convex and quasi-convex functions are considered because of their mutual inherent relationship. The aim of Elements of Concave Analysis and Applications is to provide a basic and self‐contained introduction to concepts and detailed study of concave and convex functions. It is written in the style of a textbook, designed for courses in mathematical economics, finance, and manufacturing design. The suggested prerequisites are multivariate calculus, ordinary and elementary PDEs, and elementary probability theory.
None
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results mak...