You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algori...
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Since the achievement of a fonnal definition of the concept of "algorithm", the Mathematical Theory of Computation has developed into a broad and rich discipline. The notion of "complexity of an algorithm" yields an important area of research, known as Complexity Theory, that can be approached from several points of view. Some of these are briefly discussed in the Introduction and, in particular, our view of the "Structural" approach is outlined there. We feel the subject is mature enough to permit collecting and interrelating many of the results in book fonn. Let us point out that a substantial part of the knowledge in Structural Complexity Theory can be found only in specialized journals, symposia proceedings, and monographs like doctoral dissertations or similar texts, mostly unpublished. We believe that a task to be done soon is a systematization of the interconnections between all the research lines; this is a serious and long task. We hope that the two volumes of this book can serve as a starting point for this systematization process.
The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2010, was held in Barcelona, September 20–24, 2010, consolidating the long junction between the European Conference on Machine Learning (of which the ?rst instance as European wo- shop dates back to 1986) and Principles and Practice of Knowledge Discovery in Data Bases (of which the ?rst instance dates back to 1997). Since the two conferences were ?rst collocated in 2001, both machine learning and data m- ing communities have realized how each discipline bene?ts from the advances, and participates to de?ning the challenges, of the sister discipline. Accordingly, a single E...
The foundations of parallel computation, especially the efficiency of computation, are the concern of this book. Distinguished international researchers have contributed fifteen chapters which together form a coherent stream taking the reader who has little prior knowledge of the field to a position of being familiar with leading edge issues. The book may also function as a source of teaching material and reference for researchers. The first part is devoted to the Parallel Random Access Machine (P-RAM) model of parallel computation. The initial chapters justify and define the model, which is then used for the development of algorithm design in a variety of application areas such as deterministic algorithms, randomisation and algorithm resilience. The second part deals with distributed memory models of computation. The question of efficiently implementing P-RAM algorithms within these models is addressed as are the immensely interesting prospects for general purpose parallel computation.
Aquatic ecosystems are currently experiencing unprecedented levels of impact from human activities including over-exploitation of resources, habitat destruction, pollution and the influence of climate change. The impacts of these activities on the microbial ecology of aquatic environments are only now beginning to be defined. One of the many implications of environmental degradation and climate change is the geographical expansion of disease- causing microbes such as those from the Vibrio genus. Elevating sea surface temperatures correlate with increasing Vibrio numbers and disease in marine animals (e.g. corals) and humans. Contamination of aquatic environments with heavy metals and other p...
This book contains a collection of survey papers in the areas of algorithms, lan guages and complexity, the three areas in which Professor Ronald V. Book has made significant contributions. As a fonner student and a co-author who have been influenced by him directly, we would like to dedicate this book to Professor Ronald V. Book to honor and celebrate his sixtieth birthday. Professor Book initiated his brilliant academic career in 1958, graduating from Grinnell College with a Bachelor of Arts degree. He obtained a Master of Arts in Teaching degree in 1960 and a Master of Arts degree in 1964 both from Wesleyan University, and a Doctor of Philosophy degree from Harvard University in 1969, under the guidance of Professor Sheila A. Greibach. Professor Book's research in discrete mathematics and theoretical com puter science is reflected in more than 150 scientific publications. These works have made a strong impact on the development of several areas of theoretical computer science. A more detailed summary of his scientific research appears in this volume separately.
This book constitutes the refereed proceedings of the 9th International Conference on Formal Concept Analysis, ICFCA 2011, held in Nicosia, Cyprus, in May 2011. The 16 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 49 submissions. The central theme was the mathematical formalization of concept and conceptual hierarchy. The field has developed into a constantly growing research area in its own right with a thriving theoretical community and an increasing number of applications in data and knowledge processing including disciplines such as data visualization, information retrieval, machine learning, software engineering, data analysis, data mining, social networks analysis, etc.
Deals with the feature interaction problem in telecommunication systems.
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced ...