You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.
This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture ?Leonhard Euler ? 300 years on? by R Wilson. Notable contributors include J F Cari¤ena, M Castrill¢n L¢pez, J Erichhorn, J-H Eschenburg, I Kol ?, A P Kopylov, J Korba?, O Kowalski, B Kruglikov, D Krupka, O Krupkov , R Landre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Mu¤oz Masqu, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slov k, J Szilasi, L Tam ssy, P Walczak, and others.
This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture “Leonhard Euler — 300 years on” by R Wilson. Notable contributors include J F Cariñena, M Castrillón López, J Erichhorn, J-H Eschenburg, I Kolář, A P Kopylov, J Korbaš, O Kowalski, B Kruglikov, D Krupka, O Krupková, R Léandre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muñoz Masqué, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovák, J Szilasi, L Tamássy, P Walczak, and others.
The proceedings consists of lectures and selected original research papers presented at the conference. The contents is divided into 3 parts: I. Geometric structures, II. the calculus of variations on manifolds, III. Geometric methods in physics. The volume also covers interdisciplinary areas between differential geometry and mathematical physics like field theory, relativity, classical and quantum mechanics.
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory. Sample Chapter(s). Chapter 1: Yangian and App...
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.
This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place...
This book is the second volume of the proceedings of the joint conference X. International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII. International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), 19–25 June 2017, Varna, Bulgaria. The QTS series started around the core concept that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium on the frontiers of theoretical and mathematical physics. The LT series covers the whole field of Lie Theory in its widest sense together with its applications in many facets of physics. As an interface between mathematics and physics the workshop serves as a meeting place for mat...
In the seventies and eighties, scientific collaboration between the Theory Section of the Physics Department of Leipzig University and the Institute of Theoretical Physics of the University of Wroolaw was established. This manifested itself, among other things, in the organization of regular, twice-yearly seminars located alternatively in Wrodaw and Leipzig. These Seminars in Theoretical Physics took place 27 times, the last during November 1990. In order to continue the traditions of German-Polish contacts in theoretical physics, we decided to start a new series of Seminars in Theoretical Physics and name them after the outstanding German theoretical physicist Max Born who was born in 1883 ...
This book presents the up-to-date status of quantum theory and the outlook for its development in the 21st century. The covered topics include basic problems of quantum physics, with emphasis on the foundations of quantum theory, quantum computing and control, quantum optics, coherent states and Wigner functions, as well as on methods of quantum physics based on Lie groups and algebras, quantum groups and noncommutative geometry.